
CHERI RISC-V: A Case Study
on the CVA6

Bruno Sá, Donato Ferraro, José Martins, Everton Matos, Andrea Bastoni and
Sandro Pinto

RISC-V Summit Europe 24 @ Munich

Jun 27th, 2024

Agenda CVA6H-CHERI Support
Overview, Features, Status, Implementation and Hardware Overhead02

Introduction
Capability-based Security and CHERI RISC-V Extension01

03 Next Steps and Roadmap

Introduction
Capability-based Security and CHERI RISC-V Extension

4

Capability-Based Security

● Based on the principle of least privilege

● Secure and controlled sharing of resources

● Deterministic protection

● Prevents the confused deputy problem

● To access a resource a user must present a valid

capability to it

● Been around for decades:

○ M-Machine, Intel iAPX 432, etc

○ Hydra, Sel4 and Google Fuchsia

Capabilities are unforgeable key of authority

CHERI RISC-V Extension In a Nutshell

5

● Boosts the ISA with capability-based primitives

● Based on two security principles:
○ Principle of least privilege
○ Principle of intentional use

● Fine-grained memory protection

● Scalable software compartmentalization

● Deterministic intra-address protection

● Architectural Capabilities (ptrs as caps)

● Defines a set of instructions to manipulate capabilities

● Adds a set of capability-aware per-mode SCRs:
○ pcc, ddc , <m/s>tcc <m/s>tdc

https://github.com/CTSRD-CHERI/cheri-specification/releases

CHERI Architectural Capabilities

6

● Mitigates most vulnerability exploitation related to spatial memory safety (e.g.,

out-of-bounds access)

● Every memory access enforces bounds, permissions checks

● Capabilities guarantee valid provenance and pointer integrity via 1-bit tag

● ISA instructions enforce monotonicity and guarded manipulation

● Object-capability model support

CVA6H-CHERI Support
Overview, Features, Status, Implementation and Hardware Overhead

CVA6H-CHERI: Overview

8

01

02 03

CVA6H-CHERI: Features and Status

9

01

02 03

● CHERI ISA v9 Cambridge

● Moving to RISC-V CHERI standard

● RV64 and RV32 (MMU or MMU-less)

● Merged Capability Register File

● Integer and Capability mode supported

● DDC (Default Data Capability) support

● Tagged-memory support

● Compressed Capability Format

● CHERI CSRs

● Capability-Manipulation Instructions

● CHERI & Hypervisor extension
○ CSRs (vstcc, vsepcc, vstdc)

○ HS VM LD/ST Cap Instructions (hlv/hls)

● Optional extension

CHERI CSRs Description Extends Status

PCC Program Counter PC

DDC Default Data Capability

<m/s>tcc Trap code capability <m/s>tvec

<m/s>tdc Trap Data Capability

<m/s>epcc Trap exception PC capability <m/s>epc

<m/s>ScratchC Scratch capability

01

02 03

CHERI Inst. Status

Cap.-Inspection/-Modification

Pointer-Comparison/Arithmetic

Control-Flow

Fast Register-Clearing Instr.

Adjusting to Compressed Capability Precision Instructions

Tag-Memory Access Instructions

Memory Load/Stores Capability via Capability

CVA6H-CHERI: AXI TagController

10

01

02 03

● 1-bit tag per capability

● No tag compression support (yet)

● Stores tags in Table located at reserved

space on DRAM

● Parameterizable size

● AXI4 support

● TagCache based on Pulp axi_llc*

* https://github.com/pulp-platform/axi_llc

CVA6H-CHERI: Validation (WiP)

11

01

02 03

● TestBenchs Simulation(Done)
○ Unit Tests Cheri Logic Unit, Branch Unit, and Load/Store Unit

● FPGA Emulation (Done)
○ Experimental SoC with Tagged Memory support

● Baremetal Tests (WiP)
○ Handwritten C Tests built atop the riscv-hyp-bare *

● TestRig(WiP) **
○ Add CVA6H-Cheri implementation to TestRig Framework (Done)
○ Implementing RVFI-DII (WiP)

● Bao Hypervisor (WiP)
○ Started porting Bao hypervisor to CHERI using QEMU

● CheriBSD (Not Started)
* https://github.com/josecm/riscv-hyp-tests
** https://github.com/ninolomata/TestRIG

https://github.com/josecm/riscv-hyp-tests

CVA6H-CHERI: Implementation

12

01

02 03

● Fork of CVA6 with hypervisor extension support + cheri*

● Optional extension via config parameter CVA6RVZcheri

● FPGA emulation with experimentalCVA6H-CHERI-based SoC + Tagged Memory Controller**

* https://github.com/zero-day-labs/cheri-cva6.git
** https://github.com/zero-day-labs/axi-cheri-tagctrl.git

CVA6H-CHERI: Hardware Overhead

13

01

02 03

● Single core CVA6H-CHERI with TagController support targeting Genesys2 FPGA (no

otmizations yet)
Module FPGA Resources (+ % overhead compared to vanilla CVA6)

LUTs FFs

CVA6 SoC 101587 (+36%) 56107 (+33%)

CVA6 Core 68991 (+38%) 26284 (+31%)

wt_cache_subsystem 9963 (+23%) 3034 (+36%)

load/store unit 13818 (+12%) 9010 (+13%)

execute stage 26752 (+16%) 11756 (+12%)

cheri logic unit 1953 0

issue_stage 22366 (+72%) 4656 (+38%)

AXI Tag Controller 7948 7762

Next Steps and Roadmap

Next Steps and Roadmap

15

● Complete validation (Baremetal C Tests, TestRig, Bao Hypervisor and CHERIBSD)

● Port Bao Hypervisor to CHERI

● Explore CHERI software models in the context of virtualization (hybrid and pure capability)

● Bump implementation to comply with the RISC-V CHERI standard extension RV64 and RV32

● Explore trade-offs performance/hardware overhead

Virtualization reference stack with CHERI support for MCSs systems

THANK YOU!
bruno.vilaca.sa@gmail.com

https://github.com/ninolomata
https://twitter.com/ninolomata

https://www.linkedin.com/in/brunosa560/

Q&A

GET IN
TOUCH
WITH US!
▪ Address: Universidade do Minho, Campus Azurém, 4800-058 Guimarães, PORTUGAL

▪ Phone: +351 253 510180

▪ Email: bruno.vilaca.sa@gmail.com

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

