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Memory Protection

• The Physical Memory Protection 
(PMP) (part of the privileged 
specification) enforces memory 
protection at the hart level

Memory protection is a recognized security capability

MAIN PURPOSE:
• Prevent a process from accessing 

memory that has not been allocated to it

TEEREE

blocked
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Memory Protection

• The PMP ONLY enforces memory 
protection at the hart level

• Other devices are unsupervised

• Unsupervised devices can potentially 
compromise overall System-on-Chips

Memory protection is a recognized security capability
TEEREE

Configure 

maliciously

Unregulated Transaction
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Memory Protection

• The RISC-V community has been 
working towards the specification 
of the Input/Output Physical 
Memory Protection (IOPMP)

• Mediate and manage device 
accesses to memory by performing 
permission checks

Memory protection is a recognized security capability
TEEREE

Configure 

maliciously

blocked
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IOPMP Specification

• Multiple device Support

• 5 Operation Models:
• Full
• Rapid-K
• Dynamic-K
• Isolation
• Compact-K

• Priority and non-priority rules

• Mediate bus access from devices
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IOPMP Specification

Three structures to assess the validity of a transaction:
• Entry – defines a physical address 

range and a set of rules

• Memory Domain – Used to define 
groups of entries

• Source Identifier – Identifies the 
device making the transaction 
request (recently changed to 
RRID)
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IP Overview

Feature Notes

Model Full Model
Configuration 

Protection
Only mandatory implemented

Programming 
Protection

Registers not implemented but the 
IP is stalled while configuring entries

Error Reporting Only mandatory implemented
TOR Support Implemented

Programmable 
Priority Entries

Implemented

Source 
Enforcement

Implemented
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IP Microarchitecture

• The Communication Handler extracts 
transaction’s information

• The Matching Logic calculates the 
corresponding Entry indexes and 
validates the transaction

• SID
• Base Address
• Transaction’s Length
• Transaction Type (R,W,X)
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Matching Logic

Sequential Approach

• - Performance
• + Scalability
• + Modularity

Parallel Approach

• + Performance
• - Scalability
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Matching Logic

Parallel Approach Sequential Approach

• + Performance
• - Scalability

• - Performance
• + Scalability
• + Modularity
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Entry Navigation

Always reading

next valid EntryMDCFG
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Entry Navigation
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5

Always reading

next valid EntryMDCFG
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Memory

Entry n

TransactionBase Addr Final Addr

1. Entry Analyzer detects a match with Entry n 
with the base address of the transaction

2. Entry Analyzer checks if the entire length of 
the transaction is validated by Entry n

3. Entry Analyzer checks the permissions
4. As Entry n refers to the entire memory region 

of the transaction, the Entry analyzer signals 
a match and allow

The entire transaction is validated within a clock cycle, after finding 
corresponding entry

Transaction Validation
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Functional Evaluation

• Genesys2 FPGA @100MHz
• Two configurations of a single core 

CVA6-based SoC:

• Validated SW stacks:

• IOPMP in Source Enforcement managing 
1 PULP iDMA device

• IOPMP managing 8 PULP iDMA devices

• Custom Baremetal Framework
• OpenSBI + Baremetal
• OpenSBI + Linux
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Hardware Resources

Configurations feature:
• Same number of MDs and Supported Sources
• Contains 8 entries for each MD/Source

*Specification Maximum

Entries Sources / MDs LUT FF BRAM

Baseline 8 1 2179 1285 4
x8 64 8 2878 (32%) 1862 (45%) 4 (0%)
x16 128 16 3533 (62%) 2414 (88%) 4 (0%)
x32 256 32 5000 (129%) 3597 (180%) 4 (0%)
x64 512 64 / 63* 7149 (228%) 6346 (393%) 4 (0%)
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Hardware Resources

Configurations feature:
• Same number of MDs and Supported Sources
• Contains 8 entries for each MD/Source

*Specification Maximum

Entries Sources / MDs LUT FF BRAM

Baseline 8 1 2179 1285 4
x8 64 8 2878 (32%) 1862 (45%) 4 (0%)
x16 128 16 3533 (62%) 2414 (88%) 4 (0%)
x32 256 32 5000 (129%) 3597 (180%) 4 (0%)
x64 512 64 / 63* 7149 (228%) 6346 (393%) 4 (0%)

3.5% LUT, 1,6% FF, and 0,9% BRAM increase on a CVA6-based SoC
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Latency Results

Clock Cyle penalty
(average over 1000 transactions)

• Device performing independent 
store/load operations

• Results refer to the entry that matches 
the transaction
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Latency Results

With more complex SW stacks and more complex workloads, the performance 
penalty is less noticeable!

Baremetal + DMA Linux + DMA

Performance 
penalties only up to 
3% with 64 entries



TAKEAWAY



Design and implementation of the first 
OPEN-SOURCE IOPMP IP compliant

with the version 1.0.0-draft5
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CALL TO ACTION!
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Basic IP
https://github.com/zero-day-labs/riscv-iopmp

CVA6 with IOPMP
https://github.com/zero-day-labs/cva6/tree/feat/iopmp

CALL TO ACTION!

https://github.com/zero-day-labs/riscv-iopmp
https://github.com/zero-day-labs/cva6/tree/feat/iopmp


THANK YOU!
id11207@alunos.uminho.pt

Luís Cunha (UMinho)
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