
Open-source RISC-V Input/Output Physical
Memory Protection (IOPMP) IP

Luís Cunha, Francisco Marques, Manuel Rodriguez, Tiago 
Gomes, Bruno Sá, Sandro Pinto

RISC-V Summit Europe 24 @Munich



Agenda

01 Introduction
Memory Protection Mechanisms & Specification Overview

02 Implementation
Overview

03 Evaluation
Functional Validation & Hardware Results



Introduction
01



01 Introduction4

Memory Protection

• The Physical Memory Protection 
(PMP) (part of the privileged 
specification) enforces memory 
protection at the hart level

Memory protection is a recognized security capability

MAIN PURPOSE:
• Prevent a process from accessing 

memory that has not been allocated to it

TEEREE

blocked



01 Introduction5

Memory Protection

• The PMP ONLY enforces memory 
protection at the hart level

• Other devices are unsupervised

• Unsupervised devices can potentially 
compromise overall System-on-Chips

Memory protection is a recognized security capability
TEEREE

Configure 

maliciously

Unregulated Transaction



01 Introduction6

Memory Protection

• The PMP ONLY enforces memory 
protection at the hart level

• Other devices are unsupervised

• Unsupervised devices can potentially 
compromise overall System-on-Chips

Memory protection is a recognized security capability
TEEREE

Configure 

maliciously

Unregulated Transaction

TEE Compromised



01 Introduction7

Memory Protection

• The RISC-V community has been 
working towards the specification 
of the Input/Output Physical 
Memory Protection (IOPMP)

• Mediate and manage device 
accesses to memory by performing 
permission checks

Memory protection is a recognized security capability
TEEREE

Configure 

maliciously

blocked



01 Introduction8

IOPMP Specification

• Multiple device Support

• 5 Operation Models:
• Full
• Rapid-K
• Dynamic-K
• Isolation
• Compact-K

• Priority and non-priority rules

• Mediate bus access from devices



01 Introduction9

IOPMP Specification

Three structures to assess the validity of a transaction:
• Entry – defines a physical address 

range and a set of rules

• Memory Domain – Used to define 
groups of entries

• Source Identifier – Identifies the 
device making the transaction 
request (recently changed to 
RRID)



Implementation
02



02 Implementation11

IP Overview

Feature Notes

Model Full Model
Configuration 

Protection
Only mandatory implemented

Programming 
Protection

Registers not implemented but the 
IP is stalled while configuring entries

Error Reporting Only mandatory implemented
TOR Support Implemented

Programmable 
Priority Entries

Implemented

Source 
Enforcement

Implemented



02 Implementation12

IP Microarchitecture

• The Communication Handler extracts 
transaction’s information

• The Matching Logic calculates the 
corresponding Entry indexes and 
validates the transaction

• SID
• Base Address
• Transaction’s Length
• Transaction Type (R,W,X)



02 Implementation13

Matching Logic

Sequential Approach

• - Performance
• + Scalability
• + Modularity

Parallel Approach

• + Performance
• - Scalability



02 Implementation14

Matching Logic

Parallel Approach Sequential Approach

• + Performance
• - Scalability

• - Performance
• + Scalability
• + Modularity



Entry 4
Entry 5
Entry 6
Entry 7

Entry 0
Entry 1
Entry 2
Entry 3

MD0

MD2

1
0
1
x

x

x
x

SRCMD(rrid) Entry Array

Control Logic1

Entry AnalyzerEntry 0 data

Entry Navigation

Always reading

next valid EntryMDCFG

02 Implementation15



Entry Navigation

Entry 4
Entry 5
Entry 6
Entry 7

Entry 0
Entry 1
Entry 2
Entry 3

MD0

MD2

1
0
1
x

x

x
x

SRCMD(rrid) Entry Array

Control Logic

Entry AnalyzerEntry 1 data

02 Implementation16

5

Always reading

next valid EntryMDCFG



02 Implementation17

Memory

Entry n

TransactionBase Addr Final Addr

1. Entry Analyzer detects a match with Entry n 
with the base address of the transaction

2. Entry Analyzer checks if the entire length of 
the transaction is validated by Entry n

3. Entry Analyzer checks the permissions
4. As Entry n refers to the entire memory region 

of the transaction, the Entry analyzer signals 
a match and allow

The entire transaction is validated within a clock cycle, after finding 
corresponding entry

Transaction Validation



Evaluation
03



03 Evaluation19

Functional Evaluation

• Genesys2 FPGA @100MHz
• Two configurations of a single core 

CVA6-based SoC:

• Validated SW stacks:

• IOPMP in Source Enforcement managing 
1 PULP iDMA device

• IOPMP managing 8 PULP iDMA devices

• Custom Baremetal Framework
• OpenSBI + Baremetal
• OpenSBI + Linux



03 Evaluation20

Hardware Resources

Configurations feature:
• Same number of MDs and Supported Sources
• Contains 8 entries for each MD/Source

*Specification Maximum

Entries Sources / MDs LUT FF BRAM

Baseline 8 1 2179 1285 4
x8 64 8 2878 (32%) 1862 (45%) 4 (0%)
x16 128 16 3533 (62%) 2414 (88%) 4 (0%)
x32 256 32 5000 (129%) 3597 (180%) 4 (0%)
x64 512 64 / 63* 7149 (228%) 6346 (393%) 4 (0%)



03 Evaluation21

Hardware Resources

Configurations feature:
• Same number of MDs and Supported Sources
• Contains 8 entries for each MD/Source

*Specification Maximum

Entries Sources / MDs LUT FF BRAM

Baseline 8 1 2179 1285 4
x8 64 8 2878 (32%) 1862 (45%) 4 (0%)
x16 128 16 3533 (62%) 2414 (88%) 4 (0%)
x32 256 32 5000 (129%) 3597 (180%) 4 (0%)
x64 512 64 / 63* 7149 (228%) 6346 (393%) 4 (0%)

3.5% LUT, 1,6% FF, and 0,9% BRAM increase on a CVA6-based SoC



03 Evaluation22

Latency Results

Clock Cyle penalty
(average over 1000 transactions)

• Device performing independent 
store/load operations

• Results refer to the entry that matches 
the transaction



03 Evaluation23

Latency Results

With more complex SW stacks and more complex workloads, the performance 
penalty is less noticeable!

Baremetal + DMA Linux + DMA

Performance 
penalties only up to 
3% with 64 entries



TAKEAWAY



Design and implementation of the first 
OPEN-SOURCE IOPMP IP compliant

with the version 1.0.0-draft5



03 Evaluation26

CALL TO ACTION!



03 Evaluation27

Basic IP
https://github.com/zero-day-labs/riscv-iopmp

CVA6 with IOPMP
https://github.com/zero-day-labs/cva6/tree/feat/iopmp

CALL TO ACTION!

https://github.com/zero-day-labs/riscv-iopmp
https://github.com/zero-day-labs/cva6/tree/feat/iopmp


THANK YOU!
id11207@alunos.uminho.pt

Luís Cunha (UMinho)

28


	Folie 1: Open-source RISC-V Input/Output Physical Memory Protection (IOPMP) IP
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28

