

Optimizing Data Transport Architectures in RISC-V SoCs for AI/ML Applications

RISC-V Summit Europe 2024

Ashley Stevens Director of Product Management & Marketing

June 2024

Challenges of RISC-V Based AI/ML SoCs

System IP and Network-on-Chip (NoC) SoC Interconnect IPs

Networking techniques for improved on-chip communication & data flow

Arteris Ncore Configurable Coherent Interconnect

Multi-protocol coherent interconnect

- AMBA protocols converted to internal Arteris CCMP protocol
 - Coherent Interfaces: CHI-B, CHI-E or ACE, interoperable
 - Arteris internal protocol supports MESI and MOESI coherency models
- I/O Interfaces:
 - ACE-Lite, AXI
 - Optional Proxy Cache participates in coherency domain as fully coherent cache
- Memory interface with optional system memory cache
- Peripheral Interface for I/O targets
- Directory with snoop filters
- Fault controller for functional safety option
- Transport created from switches

Why Use AMBA CHI and ACE in the Same System? RISC-V dynamic ecosystem diversity

- RISC-V is a diverse and evolving ecosystem
- Mixed ACE/CHI can ease integration of new and legacy processors
 - Mix latest high-performance RISC-V clusters using CHI with older RISC-V CPUs using ACE
 - Leverage investment in ACE IP
- Proxy caches ease integration of non-coherent accelerators into the coherent domain

Proxy Cache & System Memory Cache (SMC)

Proxy cache

- Configurable up to 8MB, 1-16 ways
- Cache for non-coherent or I/O coherent accelerators
- Fully coherent with caches and memories in the system
- Reduces accelerator traffic into coherency system
- Smooths accelerator traffic with varying bursts into 64B coherency granules

SMC

- System Memory Cache per distributed memory interface
- Configurable up to 8MB, 1-16 ways per DMI
- Scratchpad, partitioning, atomics
- Cache Maintenance Operations

Both can be configured with parity or ECC for FuSa systems

Efficient and Performant AI/ML Data Transport Architecture Optimal solutions combine coherent and non-coherent NoCs

- Coherent NoCs required for data shared with cached CPUs
 - Coherent systems work on 64B coherency granules (512b cache line)
- Extreme bandwidths in AI/ML devices
 - Local memories may reduce traffic to external memory
 - Separate shared and non-shared memory traffic
- Provide a fast and wide path to memory for non-shared traffic
- Combine coherent and I/O-coherent NoCs for optimal performance
 - Coherent hub close to the cached CPUs with narrower buses
 - Wide NoC connects the rest of the SoC including AI core array
 - Mesh topology can be appropriate for AI applications

Ncore 3 coherent interconnect provides the coherent hub

FlexNoC 5 connects the AI core accelerator units

DDR DDR		CPU CPU CPU CPU	CPU CPU CPU CPU		DDR DDR		
DDR		L2/L3	L2/L3		DDR		
DDR		Ncore					
	RAM	RAM	RAM	RAM			
	AI core	Al core	AI core	AI core			
	RAM	RAM	RAM	RAM			
	AI core	AI core	Al core	AI core			
	RAM	RAM	RAM	RAM			
	AI core	AI core	Al core	AI core			
	RAM	RAM	RAM	RAM			
	Al core	Al core	Al core	AI core			

AI/ML Accelerator SoC

AI Bandwidth Demands Met with FlexNoC 5 XL

- FlexNoC[®] 5 XL addresses non-coherent bandwidth requirements of AI/ML systems
 - Large capacity mesh generator
 - Up to 2048-bit wide connections
 - Up to 200 Network Interface Units (NIUs)
 - Up to 512 Pending transactions
- Quality of Service ensured by virtual channels
- Multi-Cast/Broadcast Stations
 - Broadcast to multiple units to reduce bandwidth

FlexNoC Intelligent Multicast Write for AI/ML

Efficient multicast - bandwidth saving

- Broadcast station optimizes use of NoC bandwidth
 - Broadcasts performed as close as possible to the destination
 - Any number of broadcast stations in a FlexNoC
- Writing to broadcast station will cause it to send posted writes to multiple destinations
- Used in AI for DNN weight and image map updates

High Memory Bandwidth from Interleaving Channels

11 Copyright © 2024 Arteris, Inc.

ARTERIS 📭

FlexNoC Physically-Aware Mesh Topology Generator Flow

SystemC and UVM models enable system level simulation

ARTERIS 맫

Automotive Domains and Their Complexity

Cache coherency is required in safety-critical systems

13

Challenge of Safety-certification for Coherent Systems Automotive ADAS/autonomous driving is a key application of AI/ML

 The complexity of coherent systems makes safety certification especially challenging

- Ncore 3 safety/resilience capabilities:
 - External ECC or parity
 - Interface ECC or parity
 - Interface duplication
 - Cache/SF ECC or parity
 - Transport link ECC or parity
 - Directory duplication
 - Fault controller/signaling

Ncore 3.4 is ISO26262 ASIL-D certified

ASIL-A	ASIL-B	ASIL-C	ASIL-D	
Low	Automo	Automotive safety level		· · · ·

14

Summary

- Separate shared coherent traffic from high-bandwidth AI traffic where possible
- FlexNoC 5 Network-on-Chip XL option is suited to many AI designs
 - Mesh topology for large regular structures that align with physical layout
 - Wide buses for massive AI bandwidths
 - Broadcast writes for simultaneous updates of weights, map updates, and commands to AI units
- Tooling environments speed design iterations compared with point solutions
- Ncore is ISO 26262 certified to ASIL D and FlexNoC 5 is available with a safety package enabling safety for AI-enabled automotive
- Chiplets offer an additional optimization opportunity enabling modularity, scaling of systems, and cost reductions due to yield improvement from disaggregation across dies

Thank you

Arteris, Inc. All rights reserved worldwide. Arteris, Arteris IP, the Arteris IP logo, and the other Arteris marks found at https://www.arteris.com/trademarks are trademarks or registered trademarks of Arteris, Inc. or its subsidiaries. All other trademarks are the property of their respective owners.

Confidential © 2024 Arteris, Inc.