
Enhancing convolutional neural
network computation with
integrated matrix extension

Chun-Nan. Ke, Heng-Kuan Lee, Yi-Xuan Huang

Andes Technology

Taking RISC-V® Mainstream 2

Outline

⚫ Motivation for Integrated-Matrix-Extension

⚫ Matrix Operation Instruction Set Architecture

⚫ Memory Sub-Sys Solution

⚫ Zero Overhead Boundary Handling

⚫ Performance Profiling/Sharing

Taking RISC-V® Mainstream 3

Motivation for Matrix Extension

⚫ Explosive Computation Demand from AI/ML Has Driven the
Innovation for Matrix/Tensor Processing Acceleration
Techniques.

⚫ A Novel Matrix Extension Aims for
◼ Programmer-Friendly ISA design

◼ Seamless data exchange with legacy RISC-V V-ext (RVV)

◼ SW scalability with VLEN agnosticism.

◼ Enhancing data locality with minimizing memory access power

◼ Achieve optimal performance by maximizing MAC utilization-rate

◼ Extreme low overhead for Matrix boundary handling

Taking RISC-V® Mainstream 4

Andes Custom Extension (ACE) on RVV

Taking RISC-V® Mainstream 5

Proposed Scalable Matrix-Mul-Acc Instruction

⚫ Achieve SW Portability by Incorporating Following Innovations

◼ Flexible management for vector registers

◼ High Compute Intensity Performance for square outer products

◼ Efficient to Corporate with Cache Memory Sub-sys

⚫ amm vd, vb, va

◼ vd[0] = vs1.p0 * vs2

Taking RISC-V® Mainstream 6

Scalability Cross All VLENs (Widening 1x)

⚫ Considering Floating Point Model as fp32 += fp32*fp32

VLEN128

Matrix A(fp32)

Matrix B(fp32)

Matrix C(fp32)

VLEN256

VLEN512
VLEN1024

Taking RISC-V® Mainstream 7

Scalability Cross All VLENs (Widening 4x)

VLEN256

VLEN512

⚫ Considering Quantized Model as int32 += int8*int8

VLEN1024

VLEN128

Matrix A(int8)

Matrix B(int8)

Matrix C(int32)

Taking RISC-V® Mainstream 8

Architecture Gain for Compute-Intensity(1/)

𝑪′𝑳
𝒉×

𝑳
𝒉

𝑪
ℎ×

𝐿
ℎ

𝑪
ℎ×

𝐿
ℎ

𝑪
ℎ×

𝐿
ℎ

𝑩
ℎ×

𝐿
ℎ

𝑨𝑳
𝒉
×𝒉

 𝐶
ℎ×

𝐿

ℎ

Single VRF choose h for achieving optimal

Architecture State Usages , where h= 𝐿𝑚𝑖𝑛 keeping C

efficiently utilized
 𝑪′𝑳

𝒉
×
𝑳

𝒉

ACC VRFs keep m = n as ACC square for achieving O

ptimal Computation Intensity

 Near Optimal Compute Rate : ෩𝑀෩𝑁
𝐿2

4∗𝐿𝑚𝑖𝑛

†

 Near Optimal Compute Intensity:
෩𝑀෩𝑁

𝐿

𝐿𝑚𝑖𝑛

2

∗ 𝐿𝑚𝑖𝑛

෪(𝑀+෪𝑁)𝐿
=

෩𝑀෩𝑁𝐿

𝐿𝑚𝑖𝑛
෪(𝑀+෪𝑁)

†

†: where ෩𝑀, ෩𝑁 are reasonable implementation factor (see
Appendix for details)

Taking RISC-V® Mainstream 9

Architecture Gain for Compute-Intensity(2/)

Arch. Gain for Tiling Matrix Computation
Compute-Intensity↑

Memory Access Bandwidth Requirement↓

Taking RISC-V® Mainstream 10

Naive Tile-based Matrix Multiplication

Matrix B = BKxN

Matrix A = AMxK
Matrix C = CMxN

M

K

K

N

CMxN+=AMxK*BKxN

void kernel() {

…

while(k>0){

vld.2d va,[mem_a];//Row Major Access

vld.2d vb,[mem_b];//Columm Major Access

amm vc, vb, va; //Tile matrix mult

k-=Ktile;

}

…

}

(1) Non-friendly for Cache Locality → Suffering Cache Line Efficiency
(2) Non-Easy for Cache HW Learn Prefetch → Suffering Cache Miss Penalty

Taking RISC-V® Mainstream 1111

Matrix B = BKxN
T

Matrix A = AMxK
Matrix C = CMxN

M

K

K

N

Efficient Tile-based Matrix Multiplication

CMxN+=AMxK*BKxN +=AMxK*BNxK
T

void kernel() {

…

while(k>0){

vld.2d vb,[mem_b];//Row Major Access

vt vb vb;//in-place VRF transpose

vld.2d va,[mem_a];//Row Major Access

amm vc, vb, va; //Tile matrix mult

k-=Ktile;

}

…

}

(1) Friendly for Cache Locality → Gain Cache Line Efficiency
(2) Easy for Cache HW Learn Prefetch → Reduce Cache Miss Penalty
(3) VRF transpose is easy to dual-issue with non-dependent instruction → No Overhead

Taking RISC-V® Mainstream 12

Effective (Emul Aware) 2D-load

 Ease Cache Complexity for vs1[16+] → Low Load to Use latency for Finer

Granularity

 Early Start MAC for vd[0+]

 No Data Hazard for the dual-issue of amm vd[0+] vs1 vs2 || vload vs1VLEN 1024,
int32 += int8*int8

 Ease u-Arch Design for elements selection

Taking RISC-V® Mainstream 13

vs1[0] vs1[3]vs1[1]…

vs3[0] vs3[3]vs3[1]…

vs2[0]

vs2[3]

vs2[1]…

vs4[0]

vs4[3]

vs4[1]…

vd0

vd1

vd2

vd3

vd4

vd5

vd6

vd7

vd8

vd9

vd10

vd11

vd12

vd13

vd14

vd15

LMUL/Unroll Support for 2D-LSU

• Elegant and Efficient Utilization of 32 Vector
Register Files.

• GeMM/Con2D/PW Conv. Workload Profiling
show Satisfactory Performance Numbers.

LMUL=4

Unroll=2

LMUL=4

Unroll=2

LMUL=4

LMUL=4

Taking RISC-V® Mainstream 14

2D-LSU Programming Model for Opt. Cache Sub-sys

MGRP = VLEN >> exp(min_segs);

void gemm_kernel() {

…

vector<int8> va,vb;

vector<int32> vd[MGRP];

vsetvl_lmul(4)

vld.2d vs2,rs2,rs4,imms;

vld.2d vs4,rs6,rs8,imms;

while(k>0){

vld.ef vs1,rs1,rs3,imms;

amm vd0,vs2[0],vs1[0];

amm vd0,vs2[1],vs1[1];

amm vd0,vs2[2],vs1[2];

amm vd0,vs2[3],vs1[3]||vld.ef vs1,rs1,rs3,imms;

amm vd0,vs2[0],vs1[0];

amm vd0,vs2[1],vs1[1];

amm vd0,vs2[2],vs1[2];

amm vd0,vs2[3],vs1[3]||vld.ef vs1,rs1,rs3,imms;

…unroll…

vld.2d vs2,rs2,rs4,imms;

vld.2d vs4,rs6,rs8,imms;

k -= Ktile*unroll_factor;

}

vsetvl_lmul(8)

vst.2d vd,rs9,rs10,imms;

}

+ Matrix B (vs2/vs4) Transpose Support → Exhibits Cache Locality

Performance

+ LMUL Support for 2d-load → Mitigating Memory Access Latency with

Register Grouping LMUL Support

+ Novel Effective Load→ Enhance Cache Latency with dual-issue

+ LMUL Support for 2d-store or Seamless data exchange with

RVV

Taking RISC-V® Mainstream 15
CSR : residue_m

CSR : residue_k

CSR : residue_n

Zero-Overhead-Boundary Support(1/)
• Elegant and Easy Config Zero-Overhead-Boundary (ZOB) CSRs

Assisted

Novel Multi-Dimensional Support

Residue_n

Residue_k

Residue_m

Taking RISC-V® Mainstream 16

Zero-Overhead-Boundary Support (2/)

• New Novel ISA-Coordination-Aware Fractured

Matrix Computation.
 Simple/Concise Function Unit Architecture

 Low Cost HW Auto Decrement

 Flexible Programing Model

VRF A VRF B

Portion Ctrl

VRF DST

Mat Mul FU

msk

Residue_m Ctrl

Residue_n Ctrl
msk

msk
Residue_k Post-Dec/Ctrl

Solution Speedups

Naiive Boundary Method 1.0x

Zero-Overhead Boundary Handling > 1.09x†

†: Speedup ratio depends on Matrix Sizes, where speedups {2.36x, 1.36x, 1.09x} when

square matrix scales around {128x128, 512x512, 2048x2048}, respectively.

Taking RISC-V® Mainstream 17

GeMM/Con2D

Architecture

(VLEN/DLEN/AMM 512/512/512)

Speed-up U-rate(%)

Std. RVV (libvec) 1x ~15%

AMM (w/o unroll) ~1.8x ~39%

AMM (optimal w/ unroll,lmul) ~3.6x† ~82%

⚫ GeMM 128x128x128

Scenarios Speed-up‡ U-rate(%)

Con2D_0 ~3.7x ~77%

Con2D_1 ~3.1x ~82%

Con2D_2 ~5.2x ~78%

⚫ Con2D

†:based on 1-core configuration
‡:Std. RVV and AMM both data are shuffled in VDLM (HVM, latency is config as 3T)

Taking RISC-V® Mainstream 18

Convolutional Neural Network
• Projected Performance† Based on Mobilenetv1 Model

– https://arxiv.org/pdf/1704.04861

– MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications

• Matrix + EdgeTrim‡ Extensions Delivers High Efficient
MAC Utilization Rates, especially for
– Distinct Pointwise Convolution Layers

– Asymmetrical Post-Convolution Quantization Operators

†:Estimated by Matrix-Multiplication U-rate (whole model on fpga measurement is underworking)
‡:EdgeTrim: Acceleration Instructions Specifically for ReQuantization Operators

1.49x 2.50x 1.57x 2.56x
2.50x 3.36x

https://arxiv.org/pdf/1704.04861

Taking RISC-V® Mainstream 19

Conclusion

⚫ A Novel Integrated Matrix Extension is proposed, Including:
◼ Integrated-Facility for Seamless Data Exchange with RVV

◼ SW Scalability with VLEN Agnosticism

◼ Enhanced Computation Intensity to Minimize Memory IO Power

◼ Achieve Optimal Performance with Maximizing MAC U-rate

◼ 2D-Load Store Unit + Cache Sub-sys to Accommodate Data Access Throughput

◼ Multi-dimensional Zero-Overhead Boundary Handling

⚫ Profiling/Projected Results Demonstrate Significant Performance
Improvement

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19

