# **RISC-V – Success factors & opportunities** for dependable automotive applications

Thomas Böhm Senior Vice President Automotive Microcontroller June 2024



## Infineon at a glance



#### **Growth areas**



### **Financials**



### FY23 revenue by segment<sup>1</sup>

- Automotive (ATV)
- Green Industrial Power (GIP)
- Power & Sensor Systems (PSS)
- Connected Secure Systems (CSS)



## Employees<sup>2</sup>



For further information: Infineon Annual Report.

<sup>1</sup> 2023 Fiscal year (as of 30 September 2023) | <sup>2</sup> As of 30 September 2023





Microcontrollers innovation runs out of steam, no more new products, no more disruption?

Wait a minute ...

Major innovations are software driven Number of vehicle ECUs is reducing Automotive industry design cycles are shortening Here's how open source technologies can enable affordable and dependable car architectures

# Performance, Cost & Dependability: Microcontroller architectures have infineon undergone major innovations in the last 25 years

| Performance                                                                                                                                 | Security & Safety                                                                                                  | Software & Al                                                                                                                  |                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| <ul> <li>2000: 8 &amp; 16bit is<br/>standard, 32bit gains<br/>share in &gt;2005</li> </ul>                                                  | 2010-2015: Security<br>extension added:<br>instructions, HSM module                                                | <ul> <li>2020-2025: Software:<br/>Virtualization, SOTA and<br/>new types of NVM</li> </ul>                                     |                                   |
| 2008-2010: Memory<br>integration & 16bit<br>instructions<br>introduced                                                                      | <ul> <li>2015-2020: Safety<br/>becomes a standard:<br/>ISO26262</li> <li>ISO 26262</li> </ul>                      | 2020-2025: Security:<br>CSRM security<br>acceleration                                                                          | What is next                      |
| 2000                                                                                                                                        | 2010                                                                                                               | 2020                                                                                                                           | →                                 |
| <ul> <li>2008-2010: Real-time capabilities: interrupt latency minimized &amp; fast context switching</li> <li>2008-2010: Safety:</li> </ul> | • 2015-2020: Performance:<br>Direct NVM access &<br>application-specific<br>accelerators, e.g. radar<br>processing | <ul> <li>2020-2025: Performance:<br/>Al acceleration</li> <li>2020-2025: Performance:<br/>Data routing acceleration</li> </ul> | Features disruption<br>Cost focus |
| Memory protection                                                                                                                           |                                                                                                                    |                                                                                                                                | Development speed                 |

# Enabling SDV: Key innovation areas for automotive microcontroller platforms in future vehicle architectures



Performance and throughput

 Handling of large amounts of parallel tasks and I/O without compromising real-time performance



## Determinism and low latency

Reliability and availability



- Predictable execution time and guaranteed timing of computations
- Minimal downtime, robust fault tolerance and fast recovery mechanisms
- Hardware redundancy and software diversity
- High diagnostic coverage, fault detection and mitigation, mechanism to brings systems to safe state
- Secure boot, restricted access to resources and data encryption



- Modularity and reuse of existing software components
- Ability to adapt to software loads, memory, communication capabilities and system target costs

#### Safety and security

Reuse and Scalability

Source: Arnold NextG, X-by-wire

## Application classes require specific computational capabilities but common requirements exist for all domains









# Traditionally microcontroller consisted of two building blocks using programable cores:

#### – System management

- Reset management, clock system, memory initialization
- Power mode handling

#### Real-time control

- Predictable execution time & low-latency interrupt handling
- RTOS support incl. scheduling, task management

## but complexity has evolved...

# Microcontroller today: Change in automotive computational tasks requires specialization, standardization & instruction set reuse





| System management         -       Reset management, clock system, memory initialization         -       Power mode handling                                                  |               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| <ul> <li>Embedded accelerators</li> <li>Security sub-systems and accelerators</li> <li>Application-specific signal processing, Networking &amp; protocol engine</li> </ul>   | 1-4x<br>cores |  |
| <ul> <li>Real-time control</li> <li>Predictable execution time &amp; low-latency interrupt handling</li> <li>RTOS support incl. scheduling, task management</li> </ul>       | 1-6x<br>cores |  |
| <ul> <li>Data processing tasks</li> <li>High-performance handling of complex processing tasks</li> <li>Memory management support &amp; Privileged execution modes</li> </ul> | 1-4x<br>cores |  |
| <ul> <li>Al inference tasks</li> <li>Specialized hardware for matrix and tensor computations</li> <li>Model compression and optimization support</li> </ul>                  |               |  |

# Microcontroller today: Change in automotive computational tasks requires specialization, standardization & instruction set reuse







## Modern core architectures address two main challenges: Dependability & Scalability



#### **Challenge: Dependability**

Dependability is a measure of a system's availability, reliability, maintainability, safety and security. The ability to maintain functionality when parts of a system break down is referred to as graceful degradation





-Ò́-

Dependability and graceful degradation require highly integer and scalable core portfolio



Core architecture needs to support extensions to support all application domains



New technologies entering the automotive and IoT domain Open source HW/SW standards and community platforms drive trends





- Open source becomes an essential part of our approach to "getting customers started"
- IFX is working on development environments combining open source technologies with qualified toolchains

Infineon and industry partners build a strong RISC-V eco-system First Virtual prototype of new RISC-V architecture available this year





Infineon and Synopsys bringing together expertise in MCU- and IP-Development – leveraging learnings and deep understanding to bring benefit to RISC-V community

## The mission to make RISC-V available for Automotive



•QUINTAURIS a joint platform to foster standardization in the ecosystem

Aligned with the RISC-V community and government bodies



Accelerating the commercialization of RISC-V based products, addressing certification and maintenance challenges

Leveraging RISC-V benefits of flexibility, control and visibility, providing a blueprint for reliable implementations



Quintauris as trusted bridge between RISC-V innovation & commercial solutions – defragmenting the ecosystem without lock-in Five leading industry players as shareholders: BOSCH (Infineon NORDIC: NORDIC)

Quitauris logo protected by https://www.quintauris.eu/

## Key take-aways

- IFX as #1 automotive microcontroller company is investing in open source technologies – RISC-V is a key technology for further expansion of our portfolio
- RISC-V offers both, a very lean and cost-efficient starting point for future high-performance, dependable and scalable controller products
- Infineon is actively shaping the RISC-V eco-system in the market – we are driving standardization with partners



