

Open-Source at BOSC: Achievements and Challenges

Yungang Bao

June 26, 2024

RISC-V: A new wave of revolution in chip design

One of 10 Breakthrough Technologies 2023 by MIT Technology Review

<u>A chip design that changes everything:</u> "Computer chip designs are expensive and hard to license. That's all about to change thanks to the popular open standard known as RISC-V."

«MIT Technology Review» 10 Breakthrough Technologies 2023:

- (1) James Webb Space Telescope
- (2) CRISPR for high cholesterol
- (3) AI that makes images
- (4) Organs on demand
- (5) Abortion pills via telemedicine
- (6) A chip design that changes everything
- (7) Ancient DNA analysis
- (8) Battery recycling
- (9) The inevitable EV
- (10) Mass-market military drones

Open-Source Chip Ecosystem (OSCE)

 Lower the barrier of chip development by saving time-to-market and the cost of IPs, EDA tools and engineers

BOSC's Mission

- In 2021, Beijing Institute of Open Source Chip (BOSC) was founded by 16 companies
- BOSC's mission is to promote the development of OSCE by playing the role of the bridge between the academy and the industry

BOSC focuses on L2 & L3 of OSCE

Open-source projects in BOSC

One of the most active open-source chip projects

- XiangShan has been one of the most active open-source chip projects
 - >4400 Stars, > 600 Forks

CPU Core: Two Tiers Roadmap

Highlights

- <u>Highly configurable</u> with Chisel and agile development toolchain
- <u>Industrial-grade</u> µarch design and development workflow

XS v3 (Kunminghu) Architecture

- Designed for ultimate performance
- Targeting server/data-center segment
- RVA-23 profile compatible
- Leading RISC-V features (H/V ext.)

Versus ARM Neoverse N2

XS v2 (Nanhu) Architecture

- Designed for power/area efficiency
- Targeting industry-control segment
- RVA-20 profile compatible
- Already taped out and tested

Versus ARM Cortex A76

µArch Overview of XS v3 (Kunminghu) Architecture

• ISA extension support

- Vector extension
- Hypervisor extension

Decoupled frontend

- Eliminate great fetch bubbles
- Instruction prefetching friendly
- Large outstanding instruction window
- Low latency & high BW \$ access
 - Closely-coupled load/store pipe & L1/L2\$
 - Multi-level composite prefetchers
 - Banked architecture
- Support CHI/TileLink coherence port

Performance Evaluation

- Methodology: RTL simulation using checkpoints selected via Simpoint
 - Compiler: GCC 12 -O3, RV64GCB, jemalloc
 - CPU Config: 3GHz, 16MB L3
 - Memory modeled by DRAMsim3 DDR4@3200, 70ns latency
 - dual channel, x8, 4 bank groups

• Evaluation results

Base score	SPECint 2006	SPECfp 2006			
Nanhu v2@2.5GHz	25.41	29.13			
Kunminghu v1@3GHz	44.98 (49.96*)	45.72			

* With compiler optimizations

Tape-out Status

Nanhu v2 has been taped out

- Nanhu v2 Chip Evaluation
 - 2.5GHz, SPECCPU06 ~10/GHz
- Ready to tape-out next
 - XS Nanhu v3
 - XS Kunminghu v1

Floorplan of Nanhu v3 & Kunminghu v1 (single core)

Nanhu v2 Test Chip Demo

#2: Open SoC Solutions

Support

- RISC-V IOMMU Architecture
- **RISC-V Advanced Interrupt Architecture**
 - MSI handling & interrupt virtualization
- Proprietary TEE optimized for RISC-V
- AXI4/CHI/TileLink protocol

- Optional cluster-level shared L3 cache
 - Directory based, Inclusive/non-inclusive
- RISC-V Debug/Trace Architecture
- Ready for 3rd party NoC for current generation
 - NoC for XiangShan work-in-progress

The OpenNoC Project

- Compliant with ARM AMBA 5 CHI 0050E.b
- Compliant with MESI Protocol Cache Coherence
- Use Non-Inclusive, Non-Exclusive policy
- Support Snoop Filter
- Support end-to-end QoS
- Support up to an 8×8 Mesh network
- Support up to **128** processors, accelerators, graphic processing units, etc.
- Support up to 16 internal memory controllers
- **256-bit** data channel
- Support up to 16 HN-Fs, with each HN-F's LLC size ranging from 0 to 32MB
- Maximum Snoop Filter size is **8MB**
- Supports a maximum of 128 RNFs

#3: The Open Verification Platform

Challenges in Chip Verification

• There are orders of magnitude fewer HW engineers than SW engineers

- Pull Requests (PRs) on GitHub related to Verilog/SV account for 0.35%
 - **Python**: 16.93%
 - **C/C++:** 14.08
 - **Java**: 11.71%
 - **Go**: 10.25%

https://madnight.github.io/githut/#/issues/2024/1

The Open Verification Platform: A Cloud-based Verification Platform for Open-source Chip projects

Features:

- Support crowdsourcing
- Based on cloud
- Support multi-languages
- Involve software engineers

Open Chip Verification with Multiple languages

- Convert RTL to Python, Java/Scala, C/C++, and Go
- Compatible with both software testing and chip verification environments

	LCC)V - code d	covera	ge re	por	t			
Current	view: top level				Hit	То	otal	Coverage	e
Test: merged.info Date: 2024-05-07 07:31:58				Lines:	136	0	1541	88.3	
			Functions:			0	0		
	Directory	Line	Coverag	e \$		Func	tions	\$	
	out/picker out uFTB		87.8 %	1276 /	1454	-	0 /	0	
	<u>rt1/common</u>		100.0 %	15	5 / 15	-	0/	0	
	m+1/mETD		95.8 %	69	/ 72	_	0 /	0	

Pytest test Code for a XiangShan module

Tutorial Resources of BOSC's projects

• Contents of tutorials

- Introduction to the microarchitecture and design concepts of XiangShan processor
- Introduction to the infrastructures for XiangShan development
- Hands-on development with typical use cases on XiangShan and MinJie

Open-access materials

- Presentations slides
 - https://github.com/OpenXiangShan/XiangShan-doc/tree/main/tutorial
- Demonstration environment
 - <u>https://github.com/OpenXiangShan/xs-env/releases</u>
- Demonstration videos (in Chinese)
 - <u>https://www.bilibili.com/video/BV1c14y1s7LF</u>
 - <u>https://www.bilibili.com/video/BV1ph4y1T745</u>

Collaboration opportunity: Linux + Redhat Mode

- Provide IPs and design service based on open-source RISC-V cores
- Reduce TCO by leveraging the efforts of open-source communities

Welcome to BOSC Booth (No.7)

Booth No.7

Dev Zone

SOC Designs from Student Participants of "One Student One Chip"

7 Posters

1.XiangShan: Empowering Open-Source RISC-

V Innovation with High Performance Processor and Agile Infrastructure

2.Calibrate GEM5 to Boost DevelopingXiangshan Processor

3. Open-Source at BOSC: Achievements and Challenges

4.Efficient Architecture Verification Framework with FPGA Acceleration for RI SC-V Processors

5.Efficient Verification Framework for RISC-V Instruction Extensions with FPGA Acceleration

6."One Student One Chip" Initiative: Learn to Build RISC-V Chips from Scratch with MOOC (Booth Area)

7.Advancing SoC Design: A Groundbreaking Architecture for Minimizing Tape -Out Costs (Booth Area)

Thanks!