
*
Manuel Arenaz

manuel.arenaz@codee.com

The First Study of the Impact of
Codee on SiFive's LLVM RISC-V

Development Ecosystem
Vadim Malenboim

vadim.malenboim@sifive.com

Wednesday, June 26th 2024

mailto:manuel.arenaz@codee.com

Automated Code Inspection for Modernization and Optimization

Introduction

2

● Why RISC-V?
○ Instruction set architecture (ISA) is open, modular, and extensible.
○ Provides a foundation to create custom processors tailored to specific needs.

● RISC-V is expanding rapidly across a diversity of industries.
○ Embedded Systems, Edge Computing, AI/ML, High-Performance Computing (HPC), Storage and

Networking, Automotive, Aerospace and Defense.

● Challenges for the widespread adoption of RISC-V?
○ Competes with the well-established ARM and x86 architectures.
○ The software ecosystems of ARM and x86 are very mature.

● It is crucial for the success of RISC-V to build a robust ecosystem of software tools,
libraries, and developer support.

Automated Code Inspection for Modernization and Optimization

Codee: Static Code Analysis for Modernization and
Optimization of Fortran/C/C++

3

● Codee is the first static code analyzer specialized in modernization and optimization
of Fortran/C/C++ code

○ Modernization = Improving robustness, stability, maintainability
○ Performance = Improving speed, reducing code size and energy consumption

● Codee is a complement for the software development ecosystem
○ It does not replace the compiler, it is a complement to find opportunities overlooked
○ It does not replace the profiler, it receives as input the information about the hotspots of the code
○ It does not replace the debugger, it helps detect bugs and avoids introducing bugs (“shift left”)
○ It is designed to interoperate with IDEs and CI/CD frameworks

● Codee helps write compiler-friendly hardware-friendly code, favoring maintainability
and readability.

Automated Code Inspection for Modernization and Optimization 4

https://www.intel.com/content/www/us/en/developer/articles/case-study/codee-18x-boost-for-compute-intense-workloads.html#gs.3z5td4

Codee for x86 architecture

● It was shown to

enable up to 18x

performance boost on

selected HPC

workloads using Intel

oneAPI Tools

targeting Intel Xeon

Scalable processors.

https://www.intel.com/content/www/us/en/developer/articles/case-study/codee-18x-boost-for-compute-intense-workloads.html#gs.3z5td4

Automated Code Inspection for Performance 5

https://github.com/codee-com/open-catalog
https://github.com/codee-com/performance-demos
https://github.com/codee-com/performance-demos-fortran

Reproducibility using
resources in public Github
repositories

Environment Linux Arm

Codee brings 2x faster code on Arm environments through
loop interchange and vectorization

1.95x 1.74x 1.97x

Codee brings 3x faster code on x86 environments through
loop interchange and vectorization

2.85x 2.53x 2.25x

Environment Linux x86_64

Codee for ARM architecture

https://github.com/codee-com/open-catalog
https://github.com/codee-com/performance-demos
https://github.com/codee-com/performance-demos-fortran

Automated Code Inspection for Modernization and Optimization

Experimental Setup for SiFive’s RISC-V architecture

6

● Objective: Evaluate the impact of Codee in the scope of single-core optimizations
○ More specifically, focus on vectorization efficiency
○ Also address memory efficiency, favoring sequential memory accesses in order to avoid cache misses.

● Benchmarking machine equipped with:
○ Operating system: SiFive LLVM-Linux 15.9.0-2023.03.0
○ Hardware: SiFive P470 Out-of-Order processor, running at 32Mhz on Xilinx VCU118 Ultrascale FPGA
○ Compiler: clang version 15.9.0 cross-compiler targeting SiFive’s RISC-V P470 processor ISA.
○ Codee version 2023.1.6 revision number 019119d00ca6 (Oct 2023)

● Benchmarking methodology:
○ Average of 5 runs, setting up the compiler’s optimization flags to -O3 -ffast-math.
○ Optimize the source code using Codee’s detection capabilities and AutoFix’es.
○ Final compilation of the optimized source code with SiFive’s cross-compiler.

Automated Code Inspection for Modernization and Optimization 7

Experimental Results using MATMUL

2.4x
faster

1.5x
faster

7.5x
faster

SiFive Clang Codee + Sifive C
PWR039 Loop at main.c:17 Not vectorized Vectorized (new loop)
PWR043 Loop at matmul.c:29 Vectorized Vectorized (higher efficiency)
PWR062 Loop at matmul.c:37 Vectorized Vectorized (higher efficiency)

SiFive's LLVM/Clang compiler powered with Codee to enable higher vectorization efficiency

Automated Code Inspection for Modernization and Optimization 8

Experimental Results using MBedTLS embedded code

318%
 improv.

2.4%

2.7%

54.29%

0.35%

34.22%

0.16%

0.41%

0.5%
0.33%

Automated Code Inspection for Modernization and Optimization

Conclusions and Next Steps

● The RISC-V open architecture is competing with the well-established ARM and x86

● The LLVM ecosystem for RISC-V is evolving rapidly, but it is not as mature as ARM or x86 yet

● Codee is a solution for developers and managers to deliver “better” Fortran/C/C++ code
○ New static code analyzer specialized in modernization and optimization of Fortran/C/C++

○ Modernization checkers: Improving robustness, stability, maintainability

○ Performance checkers: Improving speed, reducing code size and energy consumption

● This is the first study of the impact of Codee on LLVM and RISC-V
○ The results on SiFive’s P470 processor show up to 7.5x performance boost

○ Demonstrating that Codee brings a new and revolutionizing solution applicable to RISC-V

● Codee makes the upstream LLVM+RISC-V ecosystem even better

● Future work: Plan to conduct a more comprehensive study of Codee for LLVM and RISC-V

9

codee_com

/codee-com/

www.codee.com

info@codee.com

Subscribe: codee.com/newsletter/

Spain
Automated Code Inspection for Modernization and Optimization

*

http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

