- VENTANA
\\/ MICRO

GCC 14 RISC-V Vectorization Improvements
and Future Work

Dr. Robin Dapp
<rdapp@ventanamicro.com>

%
Preface MICRO

e Focus on the RISC-V Vector Extension (RVV) and related
Improvements.

e Summary of the work of numerous contributors: RiVAI, Intel, SiFive,
Rivos, ESWIN, StarFive, VRULL, Embecosm, RAU, Ventana and many
others.

e Active community and several new contributors. Can always use
helping hands, so feel free to reach out, contribute.

Improvements Since GCC 13

N MICRO

Wired up all suitable auto vectorization primitives for
integer/floating point; loads/stores, gathers, binary operations etc.
Loop and SLP vectorization work, GCC’s vector testsuite passes.

Vectorized memcpy, strlen, strcmp etc.

Vector calling convention.

Vector crypto intrinsics, XTheadVector (RVV 0.7) integrated.
OOO instruction scheduling model.

Many improvements to the vsetvl pass, fully based on GCC’s LCM.
Dynamic register group size (LMUL) selection based on
register-pressure estimation.

Pre- and post-commit CIs.

Vectorization Example

foo (Int #x, 1nt %y, 1nt %z,
int xpred, int n)
3
for (int 1 = 0; 1 < n;
x[1] = pred[i] '= 1
? y[i] + z[i]
Doyl

++1)

Compiled with

gcc -march=rvéodgev -03

L1132

vsetvll ab5,a4,e32,ml,ta,mu
slli a6,a5,2

vle32.v v0O,0(a3)
vle32.v vl1,0(al)
vmsne.vi vO,v0,1
vlie32.v v2,0(a2),v0.t
vadd.vv vi1,v2,vl,v0.t
vse32.v vl,0(a0)

add a3,a3,ab

add al,al, a6

add a2,a2,ab

add a0,a0, a6

sub a4,a4,ab

bne a4,zero, .L132

N2

VENTANA
MICRO

2
Lessons Learned MICRO

e GCC uses auto generated “instruction description” files. RVV
requires huge number of instruction modes (due to LMUL) as well as
operands and iterators.

e Caused generated files to blow up (almost 10x larger than next
largest backend), bottleneck for compiler bootstrap time.

e Needed to adjust generators to split their output, also helps other
backends.

e Vector mask implementation differs from other architectures,
bit-"packing” was a source of many bugs.

e Uncovered some long-standing vectorizer bugs due to disabling of
vector cost model for testing (thus vectorizing more).

VENTANA
\V/ MICRO

t

ion, gemu icoun

§ SPEC 2017 Vectorizat

125

instructions.

#

ion in

21.15% reduct

l|||l||l||l|||l|||l|| | | lbetter

Geomean

100
75
50
25

0

VENTANA
\// MICRO

§ SPEC 2017 Relative Improvement

mvs LLVM RISC-V mvs GCC aarch64

100

GCC better

GCC worse

-50

-100

Performance and TODOs V' micro

Takeaway: RVV reduces #instructions by ~20% across SPEC2017. In
line with what we expected and see on other architectures. Slightly
better relative improvement than GCC aarch64 and LLVM RVV.

TODOs GCC 15 and beyond:

e Strided load/store support, helps 525.x264_r and 519.lbm_r.
Known pain point in the vectorizer.
Somewhat uarch dependent but LLVM does better here.

e Currently revisiting some known-bad vectorizer costing decisions,
working on enhanced strided-load support.

e For525.x264_r need to improve SLP discovery and scheduling,
handle stores with gaps in vectorizer.

Performance and TODOs (2) ' Mmicro

e GCC 15 Transition to SLP-only representation of the vectorizer
(long-standing issue) will help with codegen and also require
adjustments.

e Vector cost model is very generic, barely uarch-specific tuning in
place. Expecting this to improve a lot once more uarchs are
available for public testing.

e Overlap handling for register groups.
e Scalar evolution for vsetvl.

Some improvements have already made it into GCC 15:

} Saturating Arithmetic (GCC 15)

VENTANA
\\//MmRo

coremark-pro’s zip-test (basically zlib) key loop uses saturating sub:
unsigned n, m;

do 3

m = *--p;

Ap = (PosT)(m >= wsize ? m - wsize : NIL);
£ while (--n);

LLVM has been supporting this for a while, GCC 15 will as well,
roughly 10% improvement:

vrigather.vv

vnclipu.wil

vssubu.vv

vrigather.vv

10

e N/ Micro
} Early-Break Vectorization (GCC 15)

e The following is vectorized upstream,

vect a's/vect b's size must be known:

for (int 1 = 0; 1 < N; 1++)

]
vect b[1] = x + 1;
if (vect_a[i] > x)
break;
vect al1] = x;
£

Common, frequently used, helps vectorization across the board.
More generic case is done differently still:

11

Fault-First Loads (GCC 15?)

N/ MICRO

Right now we recognize certain loop idioms and manually
implemented them “optimally”

(e.g. vectorized 2-byte rawmemchr in 523.xalancbmk_r).
Similarly, 2-byte strcmp possible, proof of concept in place.
Lots of similar spots, e.g. find in 523.xalancbmk_r.

LLVM went a similar route for hot loop in 557.xz_r:

while (++len != len 1imit)
1T (pbllen] != cuxrllen])
break;

Commonality: All those can be vectorized with early-break
vectorization but must not read beyond array bounds.
Requires fault-only-first load support, being worked on.

12

N/ MICRO

More to Come (GCC 15?)

e Combination of
vimv.v.x v8, a4 and
vop.v.v v2, v3, v8 into

vop.v.x v2, v3, a4.
Need register-pressure aware propagation of a4 as well as
uarch-specific adjustments.

e Aggressive fast-math reassociation (benefits scalar but also vector).
e Vector Crypto Extension for auto vectorization: vwsl11, vandn.

e min/max reduction, if-conversion for chained conditions.
e Better widening/narrowing support in GIMPLE.

13

VENTANA
N/ MICRO
RISC-V Performance Leader

Thank You.

For more details and discussion drop by at my poster.

14

