
GCC 14 RISC-V Vectorization Improvements
and Future Work

Dr. Robin Dapp
<rdapp@ventanamicro.com>

2

● Focus on the RISC-V Vector Extension (RVV) and related
improvements.

● Summary of the work of numerous contributors: RiVAI, Intel, SiFive,
Rivos, ESWIN, StarFive, VRULL, Embecosm, RAU, Ventana and many
others.

● Active community and several new contributors. Can always use
helping hands, so feel free to reach out, contribute.

Preface

3

● Wired up all suitable auto vectorization primitives for
integer/floating point; loads/stores, gathers, binary operations etc.
Loop and SLP vectorization work, GCC’s vector testsuite passes.

● Vectorized memcpy, strlen, strcmp etc.
● Vector calling convention.
● Vector crypto intrinsics, XTheadVector (RVV 0.7) integrated.
● OOO instruction scheduling model.

● Many improvements to the vsetvl pass, fully based on GCC’s LCM.
● Dynamic register group size (LMUL) selection based on

register-pressure estimation.
● Pre- and post-commit CIs.

Improvements Since GCC 13

4

foo (int *x, int *y, int *z,
 int *pred, int n)
 {
 for (int i = 0; i < n; ++i)
 x[i] = pred[i] != 1

 ? y[i] + z[i]
 : y[i];

 }

Compiled with

gcc -march=rv64gcv -O3

Vectorization Example

.L132:
vsetvli a5,a4,e32,m1,ta,mu
slli a6,a5,2
vle32.v v0,0(a3)
vle32.v v1,0(a1)
vmsne.vi v0,v0,1
vle32.v v2,0(a2),v0.t
vadd.vv v1,v2,v1,v0.t
vse32.v v1,0(a0)
add a3,a3,a6
add a1,a1,a6
add a2,a2,a6
add a0,a0,a6
sub a4,a4,a5
bne a4,zero,.L132

5

● GCC uses auto generated “instruction description” files. RVV
requires huge number of instruction modes (due to LMUL) as well as
operands and iterators.

● Caused generated files to blow up (almost 10x larger than next
largest backend), bottleneck for compiler bootstrap time.

● Needed to adjust generators to split their output, also helps other
backends.

● Vector mask implementation differs from other architectures,
bit-”packing” was a source of many bugs.

● Uncovered some long-standing vectorizer bugs due to disabling of
vector cost model for testing (thus vectorizing more).

Lessons Learned

6

SPEC 2017 Vectorization, qemu icount

Geomean: 21.15% reduction in #instructions.

better

7

SPEC 2017 Relative Improvement

GCC better

GCC worse

8

Takeaway: RVV reduces #instructions by ~20% across SPEC2017. In
line with what we expected and see on other architectures. Slightly
better relative improvement than GCC aarch64 and LLVM RVV.

TODOs GCC 15 and beyond:
● Strided load/store support, helps 525.x264_r and 519.lbm_r.

Known pain point in the vectorizer.
Somewhat uarch dependent but LLVM does better here.

● Currently revisiting some known-bad vectorizer costing decisions,
working on enhanced strided-load support.

● For 525.x264_r need to improve SLP discovery and scheduling,
handle stores with gaps in vectorizer.

Performance and TODOs

9

● GCC 15 Transition to SLP-only representation of the vectorizer
(long-standing issue) will help with codegen and also require
adjustments.

● Vector cost model is very generic, barely uarch-specific tuning in
place. Expecting this to improve a lot once more uarchs are
available for public testing.

● Overlap handling for register groups.
● Scalar evolution for vsetvl.

Some improvements have already made it into GCC 15:

Performance and TODOs (2)

10

● coremark-pro’s zip-test (basically zlib) key loop uses saturating sub:
unsigned n, m;
do {

m = *--p;
*p = (Posf)(m >= wsize ? m - wsize : NIL);

} while (--n);

● LLVM has been supporting this for a while, GCC 15 will as well,
roughly 10% improvement:
vrgather.vv
vnclipu.wi
vssubu.vv
vrgather.vv

Saturating Arithmetic (GCC 15)

11

● The following is vectorized upstream,
vect_a’s/vect_b’s size must be known:

for (int i = 0; i < N; i++)
 {
 vect_b[i] = x + i;
 if (vect_a[i] > x)
 break;
 vect_a[i] = x;
 }

● Common, frequently used, helps vectorization across the board.
More generic case is done differently still:

Early-Break Vectorization (GCC 15)

12

● Right now we recognize certain loop idioms and manually
implemented them “optimally”
(e.g. vectorized 2-byte rawmemchr in 523.xalancbmk_r).

● Similarly, 2-byte strcmp possible, proof of concept in place.
Lots of similar spots, e.g. find in 523.xalancbmk_r.

● LLVM went a similar route for hot loop in 557.xz_r:
while (++len != len_limit)

 if (pb[len] != cur[len])
 break;
● Commonality: All those can be vectorized with early-break

vectorization but must not read beyond array bounds.
● Requires fault-only-first load support, being worked on.

Fault-First Loads (GCC 15?)

13

● Combination of
vmv.v.x v8, a4 and
vop.v.v v2, v3, v8 into
vop.v.x v2, v3, a4.

Need register-pressure aware propagation of a4 as well as
uarch-specific adjustments.

● Aggressive fast-math reassociation (benefits scalar but also vector).
● Vector Crypto Extension for auto vectorization: vwsll, vandn.

● min/max reduction, if-conversion for chained conditions.
● Better widening/narrowing support in GIMPLE.

More to Come (GCC 15?)

14

RISC-V Performance Leader

Thank You.
For more details and discussion drop by at my poster.

