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Motivation
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ISA DSE

• Iterative approach

• Manual Efforts

• Propose Instructions

• Update Tools

• Integration of Instructions

Here

• Eliminate efforts for SW and 

Compiler Developers



Contents

• Encoding

• Assembly Format

• Behavior/Semantics

Examples

• Proprietary

▪ [CodAL] (Codasip)

▪ [nML] (Synopsys)

• Open

▪ [SAIL]: Official golden reference model

▪ [CoreDSL]: Developed in Scale4Edge (S4E) project, maintained by MINRES Technologies

RISC-V ISA Modeling

3→ Used here



Related work 

• Commercial
▪ [Codasip] Re-targetable LLVM C/C++ compiler for RISC-V

▪ [Synopsys] ASIP Designer: Optimizing C/C++ compiler

• Academic
▪ [TUDA] Automatic Compiler Support for Application-Specific Instruction Set Architecture Extensions

▪ [DLR] Extensible Compiler (Scale4Edge)

▪ [TUNI] OpenASIP 2.0: Co-Design Toolset for RISC-V Application-Specific Instruction-Set Processors

• Other
▪ [CGEN] architecture code generation used by binutils

Retargeting SW Compilers

Black boxes!
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Open source!

Outdated!



Seal5 - Semi-automated LLVM Support for RISC-V ISA Extensions (Including Autovectorization)

Inputs Flow

• [CoreDSL] code for custom instructions

• Optional: YAML Settings

Outputs

• Patched [LLVM] Toolchain

Introducing Seal5
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Retargeting Support Levels (LLVM)

Tool Assembler
(Encoding, Format, Effects,…)

Intrinsics/Builtins
(LLVM-IR, C/C++)

CodeGen
(ISel Patterns, Legalization)

Auto-Vectorization
(SIMD, Heuristics,…)

Extensible 

Compiler [DLR] (Needs user inputs)

Thesis

[TUDA]

OpenASIP 2.0 

[TUNI]

Seal5

(Ours) (Semi-automated) (Narrow 32-bit SIMD only)

asm("mac x3, x4, x5"); __builtin_mac(acc, x, y); acc += x * y;
Usage by

SW Developer:

for (i = 0; i < n; i++) {

  acc += arr_x[i] * arr_y[i];

}
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• During compilation the original program is 

lowered to intermediate representations (IRs) 

in a step-by-step fashion

• Optimizations are applied along the way

• During Instruction Selection Generic LLVM 

instructions are converted to target-specific 

MachineInstructions

• Instruction Selection depends on manually

specified patterns to insert any instructions.

Why do we need patterns?

?
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Method

1. Convert CoreDSL behavior to LLVM-IR functions

2. Perform lowering in a similar way to target SW

3. Add hook to emit final DAG right before 

Instruction Selection would take place

4. Transform DAG nodes to TableGen code for 

patterns

Advantages

▪ Re-use existing code in LLVM

▪ Same optimizations → increased likeliness that 

extracted patterns will actually match

▪ SIMD-instructions are detected automatically

Generating ISel Patterns
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Core-V Extension (OpenHW Group)

• 300+ ALU/Mem/SIMD/… instructions

• Implemented in [CV32E40P]

Configurations

1. Baseline (RV32IM)

2. Core-V Reference

3. Seal5 Generated

a) Without SIMD

b) With SIMD

Benchmarks

• 100+ embedded programs

Seal5 Evaluation (Core-V)
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TODO



Question: How does the Seal5 approach 

generalize for non Core-V instructions?

• RISC-V Bitmanipulation Extensions [Zbb] 

include 32-bit Rotations

• RISC-V Scalar Cryptography Extensions [Zk] 

includes custom SHA256 operations 

→Both can be supported effortlessly with Seal5.

→Resulting speedup matches previous 

observations by [TUNI].

Seal5 Evaluation (SHA256)
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TODO



Recent additions

• Migration to GlobalISel

• Support for compressed instructions

• 64-bit Targets

• Custom registers

Work in Progress

• Test-case generation

• Register-pairs

Planned features

• Floating point

• Custom bit widths: 2/4/6 bits

• CSR instructions

• Hardware Loops

• uArch-aware Scheduling

Seal5 Roadmap
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→ Generate LLVM support for RISC-V Packed Extension



Summary

• Exploration of custom ISA extensions is highly complex

• Retargeting is essential to eliminate manual efforts

Seal5 – Retargeting LLVM Compiler for RISC-V

• Novel approach for robust pattern generation and SIMD support

• Compared with reference Core-V vendor toolchain

• Usability demonstrated with SHA256 custom instructions

Conclusion
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Seal5 Repository:

https://github.com/tum-ei-eda/seal5

Contributions are welcome!

https://github.com/tum-ei-eda/seal5
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Backup slides
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Installation (inside virtualenv)

pip install seal5

Demos/Example

python3 examples/demo.py

Documentation

seal5.readthedocs.io

Issue Tracker

GitHub

Seal5 First Steps
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Generated Patterns
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Scalar 32-bit MAC:

SIMD 16-bit DOTP:



Python API

seal5_flow = Seal5Flow(“llvm-project”) → seal5_flow.initialize(...) → seal5_flow.setup(...)

→ seal5_flow.load([“*.core_desc”, ...]) → seal5_flow.transform(...)

→ seal5_flow.generate(...) → seal5_flow.patch(...) → seal5_flow.build(...)

→ seal5_flow.test(...) → seal5_flow.deploy(...) → seal5_flow.cleanup(...)

Command Line (WIP)

seal5 init llvm-project/

→ seal5 setup ... → seal5 load *.core_desc *.yml *.test.c → seal5 transform ...

→ seal5 generate ... → seal5 patch ... → seal5 build ...

→ seal5 test ... → seal5 deploy ... → seal5 cleanup ...

Seal5 Usage
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Based on YAML and Python Dataclasses

Seal5 Configuration
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• Based on [M2-ISA-R]

▪ CoreDSL Parser

▪ Provides Python-based framework for traversing behavioral descriptions

▪ Components:

− Arch: Sets, Architectural State, Encoding

− Behav: Semantics of instructions/functions/…

• Extended with LLVM-specific information

▪ Intrinsics/Builtins

▪ Heuristics/Costs

▪ Legalization Rules

• Added CoreDSL2 backend to export annotated and optimized Instructions

Seal5 Metamodel
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