
Towards Automated LLVM Support and

Autovectorization for RISC-V ISA Extensions

Philipp van Kempen, Mathis Salmen,

Daniel Mueller-Gritschneder, Ulf Schlichtmann

Technical University of Munich

TUM School of Computation, Information and Technology

Chair of Electronic Design Automation

Munich, 26th June 2024

This work has been developed in the project MANNHEIM-FlexKI. MANNHEIM-FlexKI is funded by the German Ministry of Education

and Research (BMBF) (reference numbers: 01IS22086A-L). The authors are responsible for the content of this publication.

Motivation

2

ISA DSE

• Iterative approach

• Manual Efforts

• Propose Instructions

• Update Tools

• Integration of Instructions

Here

• Eliminate efforts for SW and

Compiler Developers

Contents

• Encoding

• Assembly Format

• Behavior/Semantics

Examples

• Proprietary

▪ [CodAL] (Codasip)

▪ [nML] (Synopsys)

• Open

▪ [SAIL]: Official golden reference model

▪ [CoreDSL]: Developed in Scale4Edge (S4E) project, maintained by MINRES Technologies

RISC-V ISA Modeling

3→ Used here

Related work

• Commercial
▪ [Codasip] Re-targetable LLVM C/C++ compiler for RISC-V

▪ [Synopsys] ASIP Designer: Optimizing C/C++ compiler

• Academic
▪ [TUDA] Automatic Compiler Support for Application-Specific Instruction Set Architecture Extensions

▪ [DLR] Extensible Compiler (Scale4Edge)

▪ [TUNI] OpenASIP 2.0: Co-Design Toolset for RISC-V Application-Specific Instruction-Set Processors

• Other
▪ [CGEN] architecture code generation used by binutils

Retargeting SW Compilers

Black boxes!

5

Open source!

Outdated!

Seal5 - Semi-automated LLVM Support for RISC-V ISA Extensions (Including Autovectorization)

Inputs Flow

• [CoreDSL] code for custom instructions

• Optional: YAML Settings

Outputs

• Patched [LLVM] Toolchain

Introducing Seal5

6

Retargeting Support Levels (LLVM)

Tool Assembler
(Encoding, Format, Effects,…)

Intrinsics/Builtins
(LLVM-IR, C/C++)

CodeGen
(ISel Patterns, Legalization)

Auto-Vectorization
(SIMD, Heuristics,…)

Extensible

Compiler [DLR] (Needs user inputs)

Thesis

[TUDA]

OpenASIP 2.0

[TUNI]

Seal5

(Ours) (Semi-automated) (Narrow 32-bit SIMD only)

asm("mac x3, x4, x5"); __builtin_mac(acc, x, y); acc += x * y;
Usage by

SW Developer:

for (i = 0; i < n; i++) {

 acc += arr_x[i] * arr_y[i];

}

7

• During compilation the original program is

lowered to intermediate representations (IRs)

in a step-by-step fashion

• Optimizations are applied along the way

• During Instruction Selection Generic LLVM

instructions are converted to target-specific

MachineInstructions

• Instruction Selection depends on manually

specified patterns to insert any instructions.

Why do we need patterns?

?

8

Method

1. Convert CoreDSL behavior to LLVM-IR functions

2. Perform lowering in a similar way to target SW

3. Add hook to emit final DAG right before

Instruction Selection would take place

4. Transform DAG nodes to TableGen code for

patterns

Advantages

▪ Re-use existing code in LLVM

▪ Same optimizations → increased likeliness that

extracted patterns will actually match

▪ SIMD-instructions are detected automatically

Generating ISel Patterns

9

Core-V Extension (OpenHW Group)

• 300+ ALU/Mem/SIMD/… instructions

• Implemented in [CV32E40P]

Configurations

1. Baseline (RV32IM)

2. Core-V Reference

3. Seal5 Generated

a) Without SIMD

b) With SIMD

Benchmarks

• 100+ embedded programs

Seal5 Evaluation (Core-V)

10
TODO

Question: How does the Seal5 approach

generalize for non Core-V instructions?

• RISC-V Bitmanipulation Extensions [Zbb]

include 32-bit Rotations

• RISC-V Scalar Cryptography Extensions [Zk]

includes custom SHA256 operations

→Both can be supported effortlessly with Seal5.

→Resulting speedup matches previous

observations by [TUNI].

Seal5 Evaluation (SHA256)

11

TODO

Recent additions

• Migration to GlobalISel

• Support for compressed instructions

• 64-bit Targets

• Custom registers

Work in Progress

• Test-case generation

• Register-pairs

Planned features

• Floating point

• Custom bit widths: 2/4/6 bits

• CSR instructions

• Hardware Loops

• uArch-aware Scheduling

Seal5 Roadmap

12

→ Generate LLVM support for RISC-V Packed Extension

Summary

• Exploration of custom ISA extensions is highly complex

• Retargeting is essential to eliminate manual efforts

Seal5 – Retargeting LLVM Compiler for RISC-V

• Novel approach for robust pattern generation and SIMD support

• Compared with reference Core-V vendor toolchain

• Usability demonstrated with SHA256 custom instructions

Conclusion

13

Seal5 Repository:

https://github.com/tum-ei-eda/seal5

Contributions are welcome!

https://github.com/tum-ei-eda/seal5

[CodAL] Website: https://codasip.com/2021/02/26/what-is-codal/

[CoreDSL] Repo: https://github.com/Minres/CoreDSL

[SAIL] Repo: https://github.com/riscv/sail-riscv

[Codasip] Website: Re-targetable LLVM C/C++ compiler for RISC-V - https://codasip.com/2023/07/25/re-targetable-llvm-c-c-plus-plus-compiler-for-riscv/

[nML,Synopsys] Website: ASIP Designer: Optimizing C/C++ compiler - https://www.synopsys.com/dw/ipdir.php?ds=asip-designer

[TUDA] Thesis: Halkenhäuser, M. Automatic Compiler Support for Application-Specific Instruction Set Architecture Extensions (Master's thesis, Technische Universität).

[DLR] Paper: Schlamelcher, J., & Grüttner, K. (2022). A DSL based approach for supporting custom RISC-V instruction extensions in LLVM.

Repo: https://github.com/DLR-SE/extensible-compiler

[TUNI] Paper: Hepola, K., Multanen, J., & Jääskeläinen, P. (2022, July). OpenASIP 2.0: co-design toolset for RISC-V application-specific instruction-set processors. In 2022

 IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP) (pp. 161-165). IEEE.

Repo: https://github.com/cpc/openasip

CGEN] Repo: architecture code generation used by binutils - https://github.com/stffrdhrn/cgen

[CV32E40P] Website: OpenHW Group CV32E40P User Manual - https://cv32e40p.readthedocs.io/en/latest

Repo: https://github.com/tum-ei-eda/etiss

[Zbb] Repo: Working draft of the proposed RISC-V Bitmanipulation extension - https://github.com/riscv/riscv-bitmanip

[Zk] Repo: Scalar Cryptography v1.0.1 - https://github.com/riscv/riscv-crypto

References

14

https://codasip.com/2021/02/26/what-is-codal/
https://github.com/Minres/CoreDSL
https://github.com/riscv/sail-riscv
https://codasip.com/2023/07/25/re-targetable-llvm-c-c-plus-plus-compiler-for-riscv/
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://github.com/DLR-SE/extensible-compiler
https://github.com/cpc/openasip
https://github.com/stffrdhrn/cgen
https://cv32e40p.readthedocs.io/en/latest
https://github.com/tum-ei-eda/etiss
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-crypto

Backup slides

15

Installation (inside virtualenv)

pip install seal5

Demos/Example

python3 examples/demo.py

Documentation

seal5.readthedocs.io

Issue Tracker

GitHub

Seal5 First Steps

16

https://pypi.org/project/seal5/
https://github.com/tum-ei-eda/seal5/blob/main/examples/demo.py
https://seal5.readthedocs.io/en/latest/?version=latest
https://github.com/tum-ei-eda/seal5/issues

Generated Patterns

17

Scalar 32-bit MAC:

SIMD 16-bit DOTP:

Python API

seal5_flow = Seal5Flow(“llvm-project”) → seal5_flow.initialize(...) → seal5_flow.setup(...)

→ seal5_flow.load([“*.core_desc”, ...]) → seal5_flow.transform(...)

→ seal5_flow.generate(...) → seal5_flow.patch(...) → seal5_flow.build(...)

→ seal5_flow.test(...) → seal5_flow.deploy(...) → seal5_flow.cleanup(...)

Command Line (WIP)

seal5 init llvm-project/

→ seal5 setup ... → seal5 load *.core_desc *.yml *.test.c → seal5 transform ...

→ seal5 generate ... → seal5 patch ... → seal5 build ...

→ seal5 test ... → seal5 deploy ... → seal5 cleanup ...

Seal5 Usage

18

Based on YAML and Python Dataclasses

Seal5 Configuration

19

• Based on [M2-ISA-R]

▪ CoreDSL Parser

▪ Provides Python-based framework for traversing behavioral descriptions

▪ Components:

− Arch: Sets, Architectural State, Encoding

− Behav: Semantics of instructions/functions/…

• Extended with LLVM-specific information

▪ Intrinsics/Builtins

▪ Heuristics/Costs

▪ Legalization Rules

• Added CoreDSL2 backend to export annotated and optimized Instructions

Seal5 Metamodel

20

	Folie 1: Towards Automated LLVM Support and Autovectorization for RISC-V ISA Extensions
	Folie 2: Motivation
	Folie 3: RISC-V ISA Modeling
	Folie 5: Retargeting SW Compilers
	Folie 6: Introducing Seal5
	Folie 7: Retargeting Support Levels (LLVM)
	Folie 8: Why do we need patterns?
	Folie 9: Generating ISel Patterns
	Folie 10: Seal5 Evaluation (Core-V)
	Folie 11: Seal5 Evaluation (SHA256)
	Folie 12: Seal5 Roadmap
	Folie 13: Conclusion
	Folie 14: References
	Folie 15: Backup slides
	Folie 16: Seal5 First Steps
	Folie 17: Generated Patterns
	Folie 18: Seal5 Usage
	Folie 19: Seal5 Configuration
	Folie 20: Seal5 Metamodel

