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Problem Statement

Motivation
 Exploring new RISC-V instruction for emerging workloads (automatically)

« Extending RISC-V with custom instructions needs many steps and can be time-
consuming and error prone

 Eliminate manual efforts in Compiler Retargeting to enable ISA DSE
Compiler Retargeting
* The process of supporting new computing platforms in software development tools

« Support Levels:
1. Assembler: Minimal support for custom instructions (ASM only)
2. Intrinsics/Builtins: Manual insertion of custom instruction in high-level languages
3. CodeGen: Pattern based instruction selection based on DAG
4. Autovectorization: Automatic SIMD support (Loop-level & Basic-block)

Contributions
* Fully-automated model-based code generation for builtins and assembly-level
« Semi-automated pattern generator for scalar and SIMD ALU-type instructions
 Autovectorization support for “narrow” (sub-word) SIMD instructions GPRs

Inputs

A. CoreDSL Code [1]
* High-level Language to describe RISC-V Cores & their ISA
* Encoding, Assembly Syntax & Semantics
B. YAML Settings
« Configure Seal5 tools, passes, filters, logging,...
C. Test Sources
» Hand-written Assembly/Codegen tests
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 Core-V Extension (implemented on CV32E40P [3])
— 300+ MAC/Mem/ALU/Bitmanip/SIMD/ instructions

« Configurations
— Baseline LLVM: Upstream LLVM 17 (RV321IM)

— Core-V Reference LLVM: Developed by OpenHWGroup community
(RV32IM_XCVMac_XCVMem_XCVAlu)

— Seal5-generated LLVM (RV32IM_XCVMac_XCVMem_XCVAlu[_XCVSimd])
« Benchmarks: 100+ programs (MLPerfTiny, Embench, TACLeBench, Coremark)

 Results: Without SIMD, Seal5 performs similar to Reference LLVM. With SIMD-support
Seal5 outperforms Reference LLVM drastically.
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Roadmap

Recent additions

 Migration from ISelDAG to GloballSel

« Support compressed instructions, 64-bit targets and custom registers
Work in Progress

« Generation of test cases

» Support register-pairs (— LLVM Support for RISC-V Packed Extension)
Planned Features

« Support more datatypes: float32,floatl16,int4, . ..

« uArch-aware scheduling, ...

This work has been developed in the project MANNHEIM-FlexKl funded by the German Federal Ministry of Education and Research
(BMBF) under contract no.011S22086L. The authors are responsible for the content of this publication.
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« Based on M2-ISA-R [2]
« Extend with Seal5-specific information (Legalization Rules, Costs, Builtins,...)
« Python based Frontend (CoreDSL parser), Transforms (Analysis) and Backends
Intial Patch Generation
Generates Tablegen and C++ artifacts for:
» Assembly-level support
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Autovectorization support

* While CoreDSL has no notion of vectors, LLVM can detect SIMD instructions automat-
ically to generate patterns using vector-types

 Challenge: Adjusting compiler heuristics and cost functions of existing autovectorizers
to generate efficient code for “narrow” SIMD.

Getting Started

1. Installation pip install seal5

2. Running Examples python3 examples/demo.py

3. Read Documentation https://seal5.readthedocs.io

4. Report Bugs and request features https://github.com/tum-ei-eda/sealb/issues

Usage

Python AP
sealb flow = Seal5Flow( ) 2 sealdb flow. (...)
-2 seal5 flow. (...) 2 seal5 flow. (["" core descr, .. 1)
> seal5 flow. (...) D seal5 flow. (...) D seal5 flow. (...)
> seal5 flow. (...) D seal5 flow. (...) D seal5 flow. (...)
> seal5 flow. (...) D seal5 flow. (...)
Command-Line Interface
seal5b > sealb . =2 sealb
-2 sealb . > sealb ... > seal5 . > sealb
-2 sealb ... = sealb . =2 sealb . = sealb
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