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Problem Statement

Motivation

• Exploring new RISC-V instruction for emerging workloads (automatically)

• Extending RISC-V with custom instructions needs many steps and can be time-
consuming and error prone

• Eliminate manual efforts in Compiler Retargeting to enable ISA DSE

Compiler Retargeting

• The process of supporting new computing platforms in software development tools

• Support Levels:
1. Assembler: Minimal support for custom instructions (ASM only)
2. Intrinsics/Builtins: Manual insertion of custom instruction in high-level languages
3. CodeGen: Pattern based instruction selection based on DAG
4. Autovectorization: Automatic SIMD support (Loop-level & Basic-block)

Contributions

• Fully-automated model-based code generation for builtins and assembly-level

• Semi-automated pattern generator for scalar and SIMD ALU-type instructions

• Autovectorization support for “narrow” (sub-word) SIMD instructions GPRs

Inputs

A. CoreDSL Code [1]

• High-level Language to describe RISC-V Cores & their ISA

• Encoding, Assembly Syntax & Semantics

B. YAML Settings

• Configure Seal5 tools, passes, filters, logging,...

C. Test Sources

• Hand-written Assembly/Codegen tests

Evaluation
a) Reference (No SIMD) b) Generated (SIMD)
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CORE-V

• Core-V Extension (implemented on CV32E40P [3])
– 300+ MAC/Mem/ALU/Bitmanip/SIMD/ instructions

• Configurations
– Baseline LLVM: Upstream LLVM 17 (RV32IM)
– Core-V Reference LLVM: Developed by OpenHWGroup community

(RV32IM_XCVMac_XCVMem_XCVAlu)
– Seal5-generated LLVM (RV32IM_XCVMac_XCVMem_XCVAlu[_XCVSimd])

• Benchmarks: 100+ programs (MLPerfTiny, Embench, TACLeBench, Coremark)

• Results: Without SIMD, Seal5 performs similar to Reference LLVM. With SIMD-support
Seal5 outperforms Reference LLVM drastically.

0 1 2 3 4

·106

+SHA256

+ROTR

Baseline

SHA-256 Runtime (#Instrs)

sha256*
rotr32

RV32IM

SHA-256

• RISC-V Scalar Cryptography Extension
[5] includes custom SHA256 operations

• Results: 52% reduction in number of ex-
ecuted instruction

Roadmap

Recent additions

• Migration from ISelDAG to GlobalISel

• Support compressed instructions, 64-bit targets and custom registers

Work in Progress

• Generation of test cases

• Support register-pairs (→ LLVM Support for RISC-V Packed Extension)

Planned Features

• Support more datatypes: float32,float16,int4,...

• uArch-aware scheduling, ...

Methodology
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Metamodel

• Based on M2-ISA-R [2]

• Extend with Seal5-specific information (Legalization Rules, Costs, Builtins,...)

• Python based Frontend (CoreDSL parser), Transforms (Analysis) and Backends
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TableGen Patterns

Intial Patch Generation
Generates Tablegen and C++ artifacts for:

• Assembly-level support

• Builtins/Intrincsics

• Legalization rules

• Heuristics and cost functions

Extraction of Code-Generation Patterns
How to avoid manual definition of ISel patterns
in LLVM?

1. Convert CoreDSL behavior to LLVM-IR func-
tions

2. Perform lowering in a similar way to target SW

3. Add hook to emit final DAG right before In-
struction Selection would take place

4. Transform DAG nodes to TableGen code for
patterns

Autovectorization support

• While CoreDSL has no notion of vectors, LLVM can detect SIMD instructions automat-
ically to generate patterns using vector-types

• Challenge: Adjusting compiler heuristics and cost functions of existing autovectorizers
to generate efficient code for “narrow” SIMD.

Getting Started

1. Installation pip install seal5
2. Running Examples python3 examples/demo.py
3. Read Documentation https://seal5.readthedocs.io
4. Report Bugs and request features https://github.com/tum-ei-eda/seal5/issues

Usage

Python API

Command-Line Interface
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