Chair of Electronic Design Automation

Department of Computer Engineering

School of Computation, Information and Technology
Technical University of Munich

Towards Automated LLVM Sup

port ana

Autovectorization for RISC-V |ISA Extensions

Philipp van Kempen, Mathis Salmen, Daniel Mueller-Gritschneder, Ulf Schlichtmann

Problem Statement

Motivation
 Exploring new RISC-V instruction for emerging workloads (automatically)

« Extending RISC-V with custom instructions needs many steps and can be time-
consuming and error prone

 Eliminate manual efforts in Compiler Retargeting to enable ISA DSE
Compiler Retargeting
* The process of supporting new computing platforms in software development tools

« Support Levels:
1. Assembler: Minimal support for custom instructions (ASM only)
2. Intrinsics/Builtins: Manual insertion of custom instruction in high-level languages
3. CodeGen: Pattern based instruction selection based on DAG
4. Autovectorization: Automatic SIMD support (Loop-level & Basic-block)

Contributions
* Fully-automated model-based code generation for builtins and assembly-level
« Semi-automated pattern generator for scalar and SIMD ALU-type instructions
 Autovectorization support for “narrow” (sub-word) SIMD instructions GPRs

Inputs

A. CoreDSL Code [1]
* High-level Language to describe RISC-V Cores & their ISA
* Encoding, Assembly Syntax & Semantics
B. YAML Settings
« Configure Seal5 tools, passes, filters, logging,...
C. Test Sources
» Hand-written Assembly/Codegen tests

Evaluation
a) Reference (No SIMD)

O MLPerfTiny [TACLeBench Ll Embench-1oT B Coremark l Synt.
30 - ‘ ‘ | w w 7 30T

b) Generated (SIMD)

20 |- |

ik

0
—100% —80% —60% —40% —20% 0% 20%

CO R E-V A Runtime

 Core-V Extension (implemented on CV32E40P [3])
— 300+ MAC/Mem/ALU/Bitmanip/SIMD/ instructions

« Configurations
— Baseline LLVM: Upstream LLVM 17 (RV321IM)

— Core-V Reference LLVM: Developed by OpenHWGroup community
(RV32IM_XCVMac_XCVMem_XCVAlu)

— Seal5-generated LLVM (RV32IM_XCVMac_XCVMem_XCVAlu[_XCVSimd])
« Benchmarks: 100+ programs (MLPerfTiny, Embench, TACLeBench, Coremark)

 Results: Without SIMD, Seal5 performs similar to Reference LLVM. With SIMD-support
Seal5 outperforms Reference LLVM drastically.

SHA-256

programs
programs

10| .

ol H-H—.E-—VH:H-D-»—H—! !_J i | |
~100% —80% —60% —40% —20% 0% 20%
A Runtime

Baseline | | | |

* RISC-V Scalar Cryptography Extension £ sha256+
5] includes custom SHA256 operations O e | | mRven
« Results: 52% reduction in number of ex- +SHA2560 | ; | 5 : s

eCUted Instruction SHA-256 Runtime (#Instrs) 10°

Roadmap

Recent additions

 Migration from ISelDAG to GloballSel

« Support compressed instructions, 64-bit targets and custom registers
Work in Progress

« Generation of test cases

» Support register-pairs (— LLVM Support for RISC-V Packed Extension)
Planned Features

« Support more datatypes: float32,floatl16,int4, . ..

« uArch-aware scheduling, ...

This work has been developed in the project MANNHEIM-FlexKl funded by the German Federal Ministry of Education and Research
(BMBF) under contract no.011S22086L. The authors are responsible for the content of this publication.

Methodology

Flow

CoreDSL2

Encoding,
ASM Syntax,

i ©
Behavior @0
@

o

parse

Initial
Patches

Initial

Config
Patch

Patterns

Legal Operations,
Cost Model for Heuristics,
Builtin functions

Patch

&
Compile

v use

LLVM
Repository

Metamodel
« Based on M2-ISA-R [2]
« Extend with Seal5-specific information (Legalization Rules, Costs, Builtins,...)
« Python based Frontend (CoreDSL parser), Transforms (Analysis) and Backends
Intial Patch Generation
Generates Tablegen and C++ artifacts for:
» Assembly-level support

™/ SW Compilation \‘:

e Builtins/Intrincsics Pattern Extraction

* Legalization rules CoreDSL 2 C, C++,..
 Heuristics and cost functions lSeaI5 Frontend lCIang
Extraction pf Code-Gengr.a.tlon Patterns LLUMUIR LLVMLIR
How to avoid manual definition of 1Sel patterns e —
. ea
in LLVM? l l
1. Convert CoreDSL behavior to LLVM-IR func- ! |SelectionDAG SelectionDAG
tions Seal5 Pattern

ISel DAG
Extraction '

2. Perform lowering in a similar way to target SW

3. Add hook to emit final DAG right before In-
struction Selection would take place

4. Transform DAG nodes to TableGen code for v
patterns '

TableGen Patterns

———————————————————————————————————————

Autovectorization support

* While CoreDSL has no notion of vectors, LLVM can detect SIMD instructions automat-
ically to generate patterns using vector-types

 Challenge: Adjusting compiler heuristics and cost functions of existing autovectorizers
to generate efficient code for “narrow” SIMD.

Getting Started

1. Installation pip install seal5

2. Running Examples python3 examples/demo.py

3. Read Documentation https://seal5.readthedocs.io

4. Report Bugs and request features https://github.com/tum-ei-eda/sealb/issues

Usage

Python AP
sealb flow = Seal5Flow() 2 sealdb flow. (...)
-2 seal5 flow. (...) 2 seal5 flow. (["" core descr, .. 1)
> seal5 flow. (...) D seal5 flow. (...) D seal5 flow. (...)
> seal5 flow. (...) D seal5 flow. (...) D seal5 flow. (...)
> seal5 flow. (...) D seal5 flow. (...)
Command-Line Interface
seal5b > sealb . =2 sealb
-2 sealb . > sealb ... > seal5 . > sealb
-2 sealb ... = sealb . =2 sealb . = sealb
References

[1] CoreDSL: https://github.com/Minres/CoreDSL/wiki/CoreDSL-2-programmer’s-manual

[2] M2-ISA-R: https://github.com/tum-ei-eda/M2-ISA-R

[3] CV32E40P Spec: https://cv32e40p.readthedocs.io/en/latest/instruction_set_extensions.html
[4] Core-V LLVM Project: https://github.com/openhwgroup/corev-1lvm-project

[5] Scalar Cryptography Extension: https://github.com/riscv/riscv-crypto

SPONSORED BY THE

Contact: [m] 3 n]
. Open Source:

philipp.van-kempen@tum.de httos: //eithub / -

mathis.salmen@tum.de ¢ pst il/ u igom

daniel.mueller-gritschneder@tuwien.ac.at Hi-el-edassea Ei.'ﬁ'

Federal Ministry
of Education
and Research

https://seal5.readthedocs.io
https://github.com/tum-ei-eda/seal5/issues
https://github.com/Minres/CoreDSL/wiki/CoreDSL-2-programmer's-manual
https://github.com/tum-ei-eda/M2-ISA-R
https://cv32e40p.readthedocs.io/en/latest/instruction_set_extensions.html
https://github.com/openhwgroup/corev-llvm-project
https://github.com/riscv/riscv-crypto
philipp.van-kempen@tum.de
mathis.salmen@tum.de
daniel.mueller-gritschneder@tuwien.ac.at
https://github.com/tum-ei-eda/seal5
https://github.com/tum-ei-eda/seal5

