
Chair of Electronic Design Automation
Department of Computer Engineering
School of Computation, Information and Technology
Technical University of Munich

Towards Automated LLVM Support and
Autovectorization for RISC-V ISA Extensions

Philipp van Kempen, Mathis Salmen, Daniel Mueller-Gritschneder, Ulf Schlichtmann
Problem Statement

Motivation

• Exploring new RISC-V instruction for emerging workloads (automatically)

• Extending RISC-V with custom instructions needs many steps and can be time-
consuming and error prone

• Eliminate manual efforts in Compiler Retargeting to enable ISA DSE

Compiler Retargeting

• The process of supporting new computing platforms in software development tools

• Support Levels:
1. Assembler: Minimal support for custom instructions (ASM only)
2. Intrinsics/Builtins: Manual insertion of custom instruction in high-level languages
3. CodeGen: Pattern based instruction selection based on DAG
4. Autovectorization: Automatic SIMD support (Loop-level & Basic-block)

Contributions

• Fully-automated model-based code generation for builtins and assembly-level

• Semi-automated pattern generator for scalar and SIMD ALU-type instructions

• Autovectorization support for “narrow” (sub-word) SIMD instructions GPRs

Inputs

A. CoreDSL Code [1]

• High-level Language to describe RISC-V Cores & their ISA

• Encoding, Assembly Syntax & Semantics

B. YAML Settings

• Configure Seal5 tools, passes, filters, logging,...

C. Test Sources

• Hand-written Assembly/Codegen tests

Evaluation
a) Reference (No SIMD) b) Generated (SIMD)

−100% −80% −60% −40% −20% 0% 20%
0

10

20

30

∆ Runtime

#
p
ro
g
ra
m
s

MLPerfTiny TACLeBench Embench-IoT Coremark Synt.

−100% −80% −60% −40% −20% 0% 20%
0

10

20

30

∆ Runtime

#
p
ro
g
ra
m
s

CORE-V

• Core-V Extension (implemented on CV32E40P [3])
– 300+ MAC/Mem/ALU/Bitmanip/SIMD/ instructions

• Configurations
– Baseline LLVM: Upstream LLVM 17 (RV32IM)
– Core-V Reference LLVM: Developed by OpenHWGroup community

(RV32IM_XCVMac_XCVMem_XCVAlu)
– Seal5-generated LLVM (RV32IM_XCVMac_XCVMem_XCVAlu[_XCVSimd])

• Benchmarks: 100+ programs (MLPerfTiny, Embench, TACLeBench, Coremark)

• Results: Without SIMD, Seal5 performs similar to Reference LLVM. With SIMD-support
Seal5 outperforms Reference LLVM drastically.

0 1 2 3 4

·106

+SHA256

+ROTR

Baseline

SHA-256 Runtime (#Instrs)

sha256*
rotr32

RV32IM

SHA-256

• RISC-V Scalar Cryptography Extension
[5] includes custom SHA256 operations

• Results: 52% reduction in number of ex-
ecuted instruction

Roadmap

Recent additions

• Migration from ISelDAG to GlobalISel

• Support compressed instructions, 64-bit targets and custom registers

Work in Progress

• Generation of test cases

• Support register-pairs (→ LLVM Support for RISC-V Packed Extension)

Planned Features

• Support more datatypes: float32,float16,int4,...

• uArch-aware scheduling, ...

Methodology

Flow

CoreDSL2

Seal5
Meta-
model

Config

use

LLVM
Repository

Initial
Patch

Generator

us
e

Pattern
Extraction

ap
pl

y

Initial
Patches Patterns

ap
pl

y

generate

Patch
&

Compile

extract

pa
rs

e

Seal5
LLVM

Initial
LLVM

Patch
&

Compile

Legal Operations,
Cost Model for Heuristics,
Builtin functions

Encoding,
ASM Syntax,
Behavior

build

pa
rs

e

ap
pl

y

analyze

co
lle

ct

parse

build

Metamodel

• Based on M2-ISA-R [2]

• Extend with Seal5-specific information (Legalization Rules, Costs, Builtins,...)

• Python based Frontend (CoreDSL parser), Transforms (Analysis) and Backends

SW CompilationPattern Extraction

CoreDSL 2 C, C++,...

LLVM-IR LLVM-IR

SelectionDAG SelectionDAG

Instruction
Select

Machine Code

Seal5 Frontend

LLVM & Seal5 LLVM

Clang

LLVM

Seal5 Pattern
Extraction

ISel DAG

TableGen Patterns

Intial Patch Generation
Generates Tablegen and C++ artifacts for:

• Assembly-level support

• Builtins/Intrincsics

• Legalization rules

• Heuristics and cost functions

Extraction of Code-Generation Patterns
How to avoid manual definition of ISel patterns
in LLVM?

1. Convert CoreDSL behavior to LLVM-IR func-
tions

2. Perform lowering in a similar way to target SW

3. Add hook to emit final DAG right before In-
struction Selection would take place

4. Transform DAG nodes to TableGen code for
patterns

Autovectorization support

• While CoreDSL has no notion of vectors, LLVM can detect SIMD instructions automat-
ically to generate patterns using vector-types

• Challenge: Adjusting compiler heuristics and cost functions of existing autovectorizers
to generate efficient code for “narrow” SIMD.

Getting Started

1. Installation pip install seal5
2. Running Examples python3 examples/demo.py
3. Read Documentation https://seal5.readthedocs.io
4. Report Bugs and request features https://github.com/tum-ei-eda/seal5/issues

Usage

Python API

Command-Line Interface

References

[1] CoreDSL: https://github.com/Minres/CoreDSL/wiki/CoreDSL-2-programmer’s-manual
[2] M2-ISA-R: https://github.com/tum-ei-eda/M2-ISA-R
[3] CV32E40P Spec: https://cv32e40p.readthedocs.io/en/latest/instruction_set_extensions.html
[4] Core-V LLVM Project: https://github.com/openhwgroup/corev-llvm-project
[5] Scalar Cryptography Extension: https://github.com/riscv/riscv-crypto

This work has been developed in the project MANNHEIM-FlexKI funded by the German Federal Ministry of Education and Research
(BMBF) under contract no.01IS22086L. The authors are responsible for the content of this publication.

Contact:
philipp.van-kempen@tum.de
mathis.salmen@tum.de
daniel.mueller-gritschneder@tuwien.ac.at

Open Source:
https://github.com/
tum-ei-eda/seal5

https://seal5.readthedocs.io
https://github.com/tum-ei-eda/seal5/issues
https://github.com/Minres/CoreDSL/wiki/CoreDSL-2-programmer's-manual
https://github.com/tum-ei-eda/M2-ISA-R
https://cv32e40p.readthedocs.io/en/latest/instruction_set_extensions.html
https://github.com/openhwgroup/corev-llvm-project
https://github.com/riscv/riscv-crypto
philipp.van-kempen@tum.de
mathis.salmen@tum.de
daniel.mueller-gritschneder@tuwien.ac.at
https://github.com/tum-ei-eda/seal5
https://github.com/tum-ei-eda/seal5

