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Transient Execution Attacks

* Transient Execution Side Channel (TES) attacks exploit
speculative and out-of-order execution in modern CPUs

= Attackers can trick the CPU into transiently accessing
confidential data, thereby leaving a footprint in
microarchitectural buffers, even though the architectural state

Is unaffected
= Examples are Spectre, Meltdown or the MDS attacks

UPEC: Formal RTL Security Verification
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Secure-by-Construction Design Flow

Instrument initial design (ll) with generic control infrastructure
for security (I) and setup UPEC proof (IV) according to threat
model (1)

= Counterexample points to a transmit instruction — add it to the
list of transmitters in the IFC (V) or

Implement local security patch if the vulnerability is introduced
by a low-level design decision (VI)

v" Interleave formal security verification by UPEC with design steps
to iteratively verify and patch the design

v Allows for aggressive optimizations without risking the security
of the design

v Separation of concerns by decoupling tool-based security
analysis and manual design tasks
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SecureBOOM - Verification

Set up the computational model and the UPEC property
Used sound blackboxing to improve scalability of the proofs

Cone-of-influence reduction enables parallelization of the
proofs

Found 29 transmit instructions, Meltdown vulnerability and two
bugs In the taint propagation logic

Secure design after 12 iterations

The last (and longest) iteration finished after proving 329
properties (can run in parallel) and each property check took
around 2 hours on average
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Generic Control Infrastructure for Security
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Allows to mitigate transmitters in a generic and centralized
way
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SecureBOOM - Performance

Implementation of generic control infrastructure for security in
BOOMv3

v Average performance overhead over unsafe baseline (medium

configuration) for SPEC CPU 2006 benchmark suite:

Naive Delay 98.5 %

Eager Delay futuristic 84.6 % SecureBoom futuristic 36.0 %
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Conclusion

First formally verified RTL implementation of an out-of-order
processor capable of running Linux OS featuring exhaustive TES
mitigations with competitive performance

High robustness against design mistakes
thanks to the exhaustive nature of formal verification

Design flow establishes a separation of concerns between
iImplementation and security, relieving the designer from
having security in mind with every design decision
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