
SecureBOOM: Mitigating Spectre in an Out-of-Order

RISC-V Core with a Formally Backed Design Flow

UPEC: Formal RTL Security Verification
✓ Exhaustively detect

Transient Execution

Side Channels in RTL

implementations

✓ No need for a priori

knowledge on attacks

Generic Control Infrastructure for Security

▪ Taint result of unsafe loads → propagate taint → clear

taint of safe instructions

▪ IFC kills tainted transmit instructions → issue queue re-

issues them once they become safe

✓ Allows to mitigate transmitters in a generic and centralized

way

SecureBOOM - Performance
▪ Implementation of generic control infrastructure for security in

BOOMv3

✓ Average performance overhead over unsafe baseline (medium

configuration) for SPEC CPU 2006 benchmark suite:

Naïve Delay 98.5 %

Eager Delay futuristic 84.6 % SecureBoom futuristic 36.0 %

Eager Delay spectre 20.9 % SecureBoom spectre 5.2 %

▪ Average overhead of

SPEC CPU 2006 test

workloads for different

core sizes of BOOM

✓ Performance gain of

SecureBOOM designs

compared to conservative

fixes increases with higher

pipeline complexity

(for each threat model)

Secure-by-Construction Design Flow
▪ Instrument initial design (II) with generic control infrastructure

for security (I) and setup UPEC proof (IV) according to threat

model (III)

▪ Counterexample points to a transmit instruction → add it to the

list of transmitters in the IFC (V) or

▪ Implement local security patch if the vulnerability is introduced

by a low-level design decision (VI)

✓ Interleave formal security verification by UPEC with design steps

to iteratively verify and patch the design

✓ Allows for aggressive optimizations without risking the security

of the design

✓ Separation of concerns by decoupling tool-based security

analysis and manual design tasks

Transient Execution Attacks
▪ Transient Execution Side Channel (TES) attacks exploit

speculative and out-of-order execution in modern CPUs

▪ Attackers can trick the CPU into transiently accessing

confidential data, thereby leaving a footprint in

microarchitectural buffers, even though the architectural state

is unaffected

▪ Examples are Spectre, Meltdown or the MDS attacks

Conclusion
▪ First formally verified RTL implementation of an out-of-order

processor capable of running Linux OS featuring exhaustive TES

mitigations with competitive performance

✓ High robustness against design mistakes

thanks to the exhaustive nature of formal verification

✓ Design flow establishes a separation of concerns between

implementation and security, relieving the designer from

having security in mind with every design decision

CPU1R/W

secret1other_mem1

so
c_

st
at

e 1

Memory1

CPU2R/W

so
c_

st
at

e 2

SoC1

SoC2

secret2other_mem2

Memory2

C
o

n
st

ra
in

t:
o

th
er

_m
em

1
=

o
th

er
_m

em
2

a b

c

d

e

Local Security Patches
❖Revert low-level design decisions
❖Fix design bugs

Semi-Automatic Customization
❖ Identify transmit instructions
❖Refine list of transmitters in IFC

❖Tainting Infrastructure
❖ Information Flow Controller (IFC)

❖Futuristic vs. Spectre
❖Used to refine UPEC property

❖OoO Processor Design

Secure-by-Construction RTL
Hardware Design

FPGA Prototype
Benchmarking

I II III

IV

V VI

VII VIII

Generic
Control Infrastructure for Security Threat ModelHardware Design (RTL)

Formal RTL Analysis
❖UPEC
❖Property checking

Fetch,
Decode,
Dispatch

Out-of-Order
Issue Unit

Reg. File

Functional
Units

Load/Store
Unit

MEM

Write
Back

ROB

Head

Visibility
Point

safeunsafe

IFC

List of
transmitters

Taint
Information

d

a

b

c

Original Design

Added

Modified

Tail

e

SecureBOOM - Verification
▪ Set up the computational model and the UPEC property

▪ Used sound blackboxing to improve scalability of the proofs

▪ Cone-of-influence reduction enables parallelization of the

proofs

✓ Found 29 transmit instructions, Meltdown vulnerability and two

bugs in the taint propagation logic

✓ Secure design after 12 iterations

✓ The last (and longest) iteration finished after proving 329

properties (can run in parallel) and each property check took

around 2 hours on average

Tobias Jauch1, Alex Wezel1, Mohammad R. Fadiheh2, Philipp Schmitz1, Dominik Stoffel1 and Wolfgang Kunz1

1 RPTU Kaiserslautern-Landau, Germany 2 Stanford University, USA

Find our design

on GitHub

ICCAD’23

Paper

RISC-V Summit Europe, Munich

June 24th – June 28th 2024
The reported research was partly supported by DFG SPP Nano Security, KU

1051/11-2 and by the Intel Corp. Scalable Assurance Program.

	Folie 1

