
SecureBOOM: Mitigating Spectre in an Out-of-Order 

RISC-V Core with a Formally Backed Design Flow

UPEC: Formal RTL Security Verification
✓ Exhaustively detect

Transient Execution

Side Channels in RTL

implementations 

✓ No need for a priori 

knowledge on attacks

Generic Control Infrastructure for Security

▪ Taint result of unsafe loads     → propagate taint     → clear 

taint of safe instructions

▪ IFC kills tainted transmit instructions     → issue queue re-

issues them once they become safe

✓ Allows to mitigate transmitters in a generic and centralized 

way

SecureBOOM - Performance
▪ Implementation of generic control infrastructure for security in 

BOOMv3 

✓ Average performance overhead over unsafe baseline (medium 

configuration) for SPEC CPU 2006 benchmark suite:
 

Naïve Delay 98.5 %

Eager Delay futuristic 84.6 % SecureBoom futuristic 36.0 % 

Eager Delay spectre 20.9 % SecureBoom spectre 5.2 %

▪ Average overhead of 

SPEC CPU 2006 test

workloads for different

core sizes of BOOM

✓ Performance gain of

SecureBOOM designs 

compared to conservative 

fixes increases with higher 

pipeline complexity 

(for each threat model)

Secure-by-Construction Design Flow
▪ Instrument initial design (II) with generic control infrastructure 

for security (I) and setup UPEC proof (IV) according to threat 

model (III)

▪ Counterexample points to a transmit instruction → add it to the 

list of transmitters in the IFC (V) or

▪ Implement local security patch if the vulnerability is introduced 

by a low-level design decision (VI)

✓ Interleave formal security verification by UPEC with design steps 

to iteratively verify and patch the design

✓ Allows for aggressive optimizations without risking the security 

of the design

✓ Separation of concerns by decoupling tool-based security 

analysis and manual design tasks

Transient Execution Attacks
▪ Transient Execution Side Channel (TES) attacks exploit 

speculative and out-of-order execution in modern CPUs

▪ Attackers can trick the CPU into transiently accessing 

confidential data, thereby leaving a footprint in 

microarchitectural buffers, even though the architectural state 

is unaffected

▪ Examples are Spectre, Meltdown or the MDS attacks

Conclusion
▪ First formally verified RTL implementation of an out-of-order 

processor capable of running Linux OS featuring exhaustive TES 

mitigations with competitive performance

✓ High robustness against design mistakes

thanks to the exhaustive nature of formal verification

✓ Design flow establishes a separation of concerns between 

implementation and security, relieving the designer from 

having security in mind with every design decision
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Local Security Patches
❖Revert low-level design decisions
❖Fix design bugs

Semi-Automatic Customization
❖ Identify transmit instructions
❖Refine list of transmitters in IFC

❖Tainting Infrastructure
❖ Information Flow Controller (IFC)

❖Futuristic vs. Spectre
❖Used to refine UPEC property

❖OoO Processor Design
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SecureBOOM - Verification
▪ Set up the computational model and the UPEC property

▪ Used sound blackboxing to improve scalability of the proofs

▪ Cone-of-influence reduction enables parallelization of the 

proofs

✓ Found 29 transmit instructions, Meltdown vulnerability and two 

bugs in the taint propagation logic

✓ Secure design after 12 iterations

✓ The last (and longest) iteration finished after proving 329 

properties (can run in parallel) and each property check took 

around 2 hours on average
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