SecureBOOM: Mitigating Spectre in an Out-of-Order
RISC-V Core with a Formally Backed Design Flow

Tobias Jauch', Alex Wezel!, Mohammad R. Fadiheh?, Philipp Schmitz!, Dominik Stoffel' and Wolfgang Kunz'
' RPTU Kaiserslautern-Landau, Germany ¢ Stanford University, USA

Transient Execution Attacks

* Transient Execution Side Channel (TES) attacks exploit
speculative and out-of-order execution in modern CPUs

= Attackers can trick the CPU into transiently accessing
confidential data, thereby leaving a footprint in
microarchitectural buffers, even though the architectural state

Is unaffected
= Examples are Spectre, Meltdown or the MDS attacks

UPEC: Formal RTL Security Verification

v Exhaustively detect soC,
Transient Execution -4 other_mem, -

Side Channels in RTL R/W
Implementations

CPU,

Memory,

Constraint:
other_mem, = other_mem

No need for a priort
knowledge on attacks

—r other_mem, [|secret, CPU
2

SOCZ Memory,

Secure-by-Construction Design Flow

Instrument initial design (ll) with generic control infrastructure
for security (I) and setup UPEC proof (IV) according to threat
model (1)

= Counterexample points to a transmit instruction — add it to the
list of transmitters in the IFC (V) or

Implement local security patch if the vulnerability is introduced
by a low-level design decision (VI)

v" Interleave formal security verification by UPEC with design steps
to iteratively verify and patch the design

v Allows for aggressive optimizations without risking the security
of the design

v Separation of concerns by decoupling tool-based security
analysis and manual design tasks

: . I 1
Generic

Control Infrastructure for Security Hardware Design (RTL) Threat Model
+»* Tainting Infrastructure & 000 Processor Desien +* Futuristic vs. Spectre
** Information Flow Controller (IFC) iy g +* Used to refine UPEC property

IV -
Formal RTL Analysis

\' * UPEC VI
Semi-Automatic Customization * Property checking Local Security Patches

+» Identify transmit instructions +»* Revert low-level design decisions
% Refine list of transmitters in IFC ** Fix design bugs

Vil

Secure-by-Construction RTL
Hardware Design

SecureBOOM - Verification

Set up the computational model and the UPEC property
Used sound blackboxing to improve scalability of the proofs

Cone-of-influence reduction enables parallelization of the
proofs

Found 29 transmit instructions, Meltdown vulnerability and two
bugs In the taint propagation logic

Secure design after 12 iterations

The last (and longest) iteration finished after proving 329
properties (can run in parallel) and each property check took
around 2 hours on average

TUR,
Technische U tét % Stanford
(T4

R P Kaiserslautern University
Landau

Generic Control Infrastructure for Security

Taint result of unsafe loads @& — propagate taint @ — clear
taint of safe instructions ®

IFC kills tainted transmit instructions @ — 1ssue queue re-
Issues them once they become safe ©®

Allows to mitigate transmitters in a generic and centralized
way

Taint

Reg. File Information MEM

Out-of-Order é Load/Store | |

Unit

Fetch, Issue Unit Q R
Decode, Laabopf URCHONATL
Units

Dispatch a

Visibility
Point Head

[re
List of Bl Original Design
transmitters B Added

BBB Modified
unJafe ssze Q

SecureBOOM - Performance

Implementation of generic control infrastructure for security in
BOOMv3

v Average performance overhead over unsafe baseline (medium

configuration) for SPEC CPU 2006 benchmark suite:

Naive Delay 98.5 %

Eager Delay futuristic 84.6 % SecureBoom futuristic 36.0 %

Eager Delay spectre 20.9 % SecureBoom spectre 5.2 %
g % & ¢ & & & o@b S NN PO O S

yo)
%,
+

Hm Naive Delay Eager Delay Futuristic W SecureBOOM Futuristic Eager Delay Spectre B SecureBOOM Spectre

The reported research was partly supported by DFG SPP Nano Security, KU
1051/11-2 and by the Intel Corp. Scalable Assurance Program.

Average overhead of
SPEC CPU 2006 test e x
workloads for different
core sizes of BOOM

L
~l
v
\

Performance gain of

Normalized average execution time
over insecure baseline design

~=7 _ X
: p IS o
SecureBOOM designs X
. 1,25 =X

compared to conservative S O o
. . . . 1,00 —————"XK———""""
fixes increases with higher smal Medium Lorge Veg:
pipeline complexity s oot oriooM

(for each threat model)

Conclusion

First formally verified RTL implementation of an out-of-order
processor capable of running Linux OS featuring exhaustive TES
mitigations with competitive performance

High robustness against design mistakes
thanks to the exhaustive nature of formal verification

Design flow establishes a separation of concerns between
iImplementation and security, relieving the designer from
having security in mind with every design decision

L Find our design ICCAD'23

2% o GitHub

RISC-V Summit Europe, Munich
June 24t — June 28" 2024

	Folie 1

