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© Introduction @ Mining microcode for metrics

{ uFC We ran this flow at single core level and a subsystem of 8
cores. We generated 412 coverpoints in a single IP setup
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RISC-V — a name that sparks innovation all across the
globe! Recent market survey indicates RISC-V industry to
touch $92B by 2030. We at AsFigo are driven by
opensource and help our customer adopt the same In chip
design. In this work, we share our experience of building
custom flows based on opensource ecosystem to build

| and with existing regression of 1200+ tests (each running
extensions

S with 10+ random seeds) we achieved 76% functional
Jr[fagxggm;y‘p coverage at first. We then added specific tests to focus on
[ P ¥£i'is and ended adding 20 focused tests (constrained random)
/ oS éﬁ}‘,ﬂj{}?ﬁ and ran them with 50 seeds each and got 99.2% coverage.

reliable, secure systems using RISC-V.
We have also deployed similar uFV flow on non-RSIC-V
& - processors and hence are confident that this flow suits
> 2 - all opcodes various classes of designs.
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Spec_lflcally, we have built flows around uCodg to measure . Subsystem (8 o0 w0 | 100 | 208 " " -
quality of designs that save customers weeks in their chip cores)
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design schedules. It build functional coverage metrics P ‘

quickly from uCode and aptly named as uFC.

© Typical RISC-V uArch - Trireme example © Integrating uFC into simulation Framework

_ In summary, our paper contributes to the growing body of
NextPC [ _ — — N D-Valid . - ] .
lselect . l research on RISC-V verification methodologies by
Targe! S Conto At A Introducing a povel gpproa_ch_ to gddress the uni_que
T e \Lc : [ Python script to generate | challenges associated with verifying mlc_rocode. We be_lleve
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clear:

(imem_rd & imem_addr == CUR_PC) #£1

W rd, zero |(fmm— (imem_rd & imem_addr == CUR_PC + (cur_imm * 4)) [->1]:
: endsequence : af_rv_hr_seq
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