
www.meteconferences.org

RISC-V ISA & code coverage

Mining microcode for metrics Results

We ran this flow at single core level and a subsystem of 8

cores. We generated 412 coverpoints in a single IP setup

and with existing regression of 1200+ tests (each running

with 10+ random seeds) we achieved 76% functional

coverage at first. We then added specific tests to focus on

and ended adding 20 focused tests (constrained random)

and ran them with 50 seeds each and got 99.2% coverage.

We have also deployed similar uFV flow on non-RSIC-V

processors and hence are confident that this flow suits

various classes of designs.

Contact Information

In summary, our paper contributes to the growing body of

research on RISC-V verification methodologies by

introducing a novel approach to address the unique

challenges associated with verifying microcode. We believe

that our custom flow development for microcode functional

coverage will serve as a valuable resource for RISC-V

Summit Europe

Would like to acknowledge the

contributions by my colleagues

• Deepa Palaniappan

• Hemamalini Sundaram

Ajeetha Kumari Venkatesan

Director of Verification

AsFigo Technologies

+44 7308 024 192

ajeethak@asfigo.com

www.asfigo.com

uFC – Functional Coverage

on

RISC-V microcode

Ajeetha Kumari Venkatesan
AsFigo Technologies

uFC

Python script to generate
Trace-CSV

Supports both UVM and non-
UVM TBs

Wider applications –
Emulation, FPGA, Post-Si etc.

SV FCOV uFC

• all opcodes

• all instruction operands

• positive/negative immediate values

• exception and interrupt handling

• corner cases (overflow, underflow, DIV-by-0)

• aligned/unaligned load/store operations

• forward/backward branches

• branch hit history

• Illegal, hint instructions

• privileged CSRs

• hazard conditions

–RD port conflict

Code Coverage

Importance Necessary but not

sufficient

Ease of use Fully automated

Waivers Manual/semi-

automated

exclusion flows

Block-by-block

view

An instruction

“fetched” may not

be “executed”

Combinatorial Lacks temporal

coverage

Resources EDA tools, run

time, disk space

uFC – uCode

Functional Coverage

Importance Necessary but

not sufficient

Ease of use Semi automated

Flexible views end-to-end

Data centric Data dependency

across stages

Combinatorial ,

Sequential

Choose appropriate

sampling

Resources Python, ISS,

SystemVerilog

RISC-V – a name that sparks innovation all across the

globe! Recent market survey indicates RISC-V industry to

touch $92B by 2030. We at AsFigo are driven by

opensource and help our customer adopt the same in chip

design. In this work, we share our experience of building

custom flows based on opensource ecosystem to build

reliable, secure systems using RISC-V.

Source: SHD Group

Specifically, we have built flows around uCode to measure

quality of designs that save customers weeks in their chip

design schedules. It build functional coverage metrics

quickly from uCode and aptly named as uFC.

Introduction1

Typical RISC-V uArch – Trireme example2

3

4

Integrating uFC into simulation Framework 5

uFC- Branch instructions 6

7

Conclusion8

Acknowledgements

Trireme RISC-V Design Platform

© Aldec

Credits –

RISC-DV

Applications

• Pick intelligent tests

• Optimize regression
suites

Roadmap

• Machine Learning to
improve test quality

• Floating Point support

References9

[1] RISC-V, The RISC-V Instruction Set

Manual Volume I: User-Level ISA.

[2] IEEE, Standard for SystemVerilog

Unified Hardware Design, Specification,

and Verification Language (IEEE Std

1800 -2023)

[3] IEEE UVM 1800.2

[4] https://pypi.org/project/riscv-

assembler

mailto:ajeethak@asfigo.com
http://www.asfigo.com/
https://pypi.org/project/riscv-assembler
https://pypi.org/project/riscv-assembler

	Slide 1

