uFC - Functional Coverage

sy Cerocate @;{g’%%@

RlSC Ajeetha Kumaril Venkatesan |
AsFigo Technologies Open-source (riven

© Introduction @ Mining microcode for metrics

{ uFC We ran this flow at single core level and a subsystem of 8
cores. We generated 412 coverpoints in a single IP setup

@Resuilts

SV FCOV

RISC-V — a name that sparks innovation all across the
globe! Recent market survey indicates RISC-V industry to
touch $92B by 2030. We at AsFigo are driven by
opensource and help our customer adopt the same In chip
design. In this work, we share our experience of building
custom flows based on opensource ecosystem to build

| and with existing regression of 1200+ tests (each running
extensions

S with 10+ random seeds) we achieved 76% functional
Jr[fagxggm;y‘p coverage at first. We then added specific tests to focus on
[P ¥£i'is and ended adding 20 focused tests (constrained random)
/ oS éﬁ}‘,ﬂj{}?ﬁ and ran them with 50 seeds each and got 99.2% coverage.

reliable, secure systems using RISC-V.
We have also deployed similar uFV flow on non-RSIC-V
& - processors and hence are confident that this flow suits
> 2 - all opcodes various classes of designs.
jos e » all instruction operands
i w * positive/negative Immediate values r | | - | | |
" ", « exception and interrupt handling Sk
. . * corner cases_(overflow, underflow, _DIV-by-O) | | Seeds il | Focused | per Final
s m] meoem o o e oo™ » aligned/unaligned load/store operations Configuration | Coverpoints | Tests | per Coverage | Tests | Focused | Coverage
s G g =S forward/backward branches Test Test
T oy ol — —— branch hit history | : . : . . : :
Source: SHD Group * lllegal, hint instructions Single Core | 412 1200+ | 50 76% 20 00 | 992%
.. . » privileged CSRs = | | | | | | |
Spec_lflcally, we have built flows around uCodg to measure . Subsystem (8 o0 w0 | 100 | 208 " " -
quality of designs that save customers weeks in their chip cores)

. . . . —RD port conflict ‘
design schedules. It build functional coverage metrics P ‘

quickly from uCode and aptly named as uFC.

© Typical RISC-V uArch - Trireme example © Integrating uFC into simulation Framework

_ In summary, our paper contributes to the growing body of
NextPC [_ — — N D-Valid . -] .
lselect . l research on RISC-V verification methodologies by
Targe! S Conto At A Introducing a povel gpproa_ch_ to gddress the uni_que
T e \Lc : [Python script to generate | challenges associated with verifying mlc_rocode. We be_lleve
— X g;, | S : |% | | Trace-CSV that our custom flow development for microcode functional
oC - o X CEM MR e | coverage will serve as a valuable resource for RISC-V
. = c _r) / § § o E -
Sl IEL]] P A T : §|§ { Supports both UVM and non- S B
A (S gdA LA .A1 Al it % A
HIE @ AtE—4t UVM TBs
+ Write Enable
I-Mem D-Mem
L meface J - . metae Wider applications —
Fetch 1 Fetch 2 Decode Execute Mem1 Mem2 WB Emulation, FPGA, Post-Si etc.

Trireme RISC-V Design Platform

Q References

g e e — = T PN

e iemer T =
. e e | [1] RISC-V, The RISC-V Instruction Set
- e 7 T RISC-DV Manual Volume I: User-Level ISA.
SIS comprase s e ions [2] IEEE, Standard for SystemVerilog
BERE IS S St S * Pick intelligent tests Unified Hardware Design, Specification,
Ry I T » Optimize regression Applications and Verification Language (IEEE Std
e = T = suites 1800™-2023)
S B T =T . _ [3] IEEE UVM 1800.2
S T CTmmmmm e » Machine Learning to
§: %1 Improve test quality Roadmap [4]
— * Floating Point support

RISC-V ISA & code coverage G uFC- Branch instructions

Acknowledgements

uFC — uCode :
Code Coverage | Iﬂmndmm}tlijggﬁzf Cycle for Branch Would like to acknowledge the

Importance Necessary but not Importance Necessary but * Branch condition is checked by ALU and controller {Zero output from .fiéIL_TU]1 Contrl b Utl OnS by my COI Ieag ueS
flicient . BT 151,153, iy
sufficien not sufficient AL S ding o,
mase ofuse e A Ease of use Semi automated "I — :
Asel=reg o
Waivers Manual/semi- Cloxible vi | | Deepa‘ Pal all Iap pan
automated exipie views enda-to-en pC - -
Sruelan o el Hemamalini Sundaram
Data centric Data dependency E o DMEM
. . across stages ALUout ¥ el m o] U | - =t | /Y i " DataR]
view “fetched” may not hddrB A A Al bR ContaCt Informatlon
be “executed” ot | 5 i
Combinatorial , Choose appropriate - L« Fidnrtond m B B i
. . Sequential sampling PCwrite Rsel"e8 AlUsel=Sub . .
S Ajeetha Kumari Venkatesan
Resources Python, ISS, " ¥ -
Resources DA 0ls. 1 e / - Director of Verification
- \ Sequence ar_rv_no_nr_sedq, . .
s b 2, cl . :
I Tz za T T sae B B (imem_rd && imem_addr == CUR_PC) #£1 ASFlgO TeChnOlOg|eS
— oS d s =w 33 =P D . [
=s =w 2ec<=r3 w o rd, rsl (imem_rd && imem_addr == CUR_PC + 4) [->1]:
=Pt e =23 endsequence : af_rv_no_br_seq +44 7308 024 192
s> soiss’ j next branch
LuL =o sequence af_rv_br_seq;

]
Q
Q

clear:

(imem_rd & imem_addr == CUR_PC) #£1

W rd, zero |(fmm— (imem_rd & imem_addr == CUR_PC + (cur_imm * 4)) [->1]:
: endsequence : af_rv_hr_seq

N

203000 ba =
203000 be =

)
W

203000 d= =
20300903 =

NOANNNOANWA
AunaoQnhnig

mailto:ajeethak@asfigo.com
http://www.asfigo.com/
https://pypi.org/project/riscv-assembler
https://pypi.org/project/riscv-assembler

	Slide 1

