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Problem Statement

Motivation

• The RISC-V ISA provides a set of vector extensions [1] featuring powerful SIMD instruc-
tions which can be used to accelerate machine learning tasks on edge devices.

• The RISC-V ecosystem lacks a lightweight, open-source, and vendor-agnostic compute
library to support these extensions.

State of the Art

• The CMSIS-NN project provides kernels optimized for ARM processors with Neon or
Helium, Arm’s vector processing extensions [3]

• Autovectorization which is normally applied by embedded software compilers such as
the LLVM project and RISC-V GNU Toolchain is a challenging task [8]

• A number of open-source RVV implementations have been published, however none
currently exists that implments the full RVV 1.0 specifcation [4, 5, 6]

Goals

• Propose an optimized kernel library, muRISCV-NN, which fills the gap in current indus-
try standard ML deployment toolchains for the RISC-V ecosystem

• Integrate muRISCV-NN into Tensorflow Lite (TFlite) for Microcontrollers (TFLM) [2] as a
bit accurate replacement for CMSIS-NN

• Demonstrate the effectiveness of muRISCV-NN by comparison with the default refer-
ence kernels and optimized scalar kernels that have been autovectorized by the LLVM
compiler

Optimized Reference Kernels

CMSIS-NN [3]
Use CMSIS-NN kernels as baseline for muRISCV-NN

• Provides basic implementation
• Interface with TFlite by mapping function names
• Helps to maintain bit-accuracy

VL = 128 bits, SEW = 32 bits, LMUL = 2

VREG0 3 2 1 0

VREG1 7 6 5 4

VL = 128 bits, SEW = 16 bits, LMUL = 1

VREG0 7 6 5 4 3 2 1 0

RISCV Vector Extension Features:

• 32 Vector Registers VL bits long
• Element size (SEW) is dynamic
• Vectors can span multiple vector regis-

ters through grouping (LMUL)
• Max number of elements in a vector
(LMUL · VL/SEW)

Designing and Optimizing Kernels:

• Kernels are written to be VL agnostic
• Select SEW and LMUL based on expected parallelism
• Adjust degree of loop unrolling to maximize use of the vector registers
• Prevent Register Spill
• Design tradeoff between LMUL and Loop Unrolling

Vectorization Challenges:

• Precision of kernel inputs forces a minimum SEW
• TFLM memory layout complicates kernels

– Im2Col [3] transform helps, but increases memory usage
• Depthwise Convolutions difficult to vectorize

– Filters often small (3x3 or 5x5)
– Number of channels often much smaller than maximum vector length
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Experimental Results

MLPerf Tiny Benchmark [7]

Name Type Use Case Quantized Size
toycar DNN Anomaly Detection 270 kB
resnet CNN Image Classification 96.2 kB
vww CNN Visual Wake Words 325 kB
aww CNN Keyword Spotting 58.3 kB

Experimental Setup:

• Target Architecture : rv32imzve32x
• Deployment Framework : TFLM
• Models Quantized to 8-bit integer
• riscv-isa-sim instruction set simulator used for simulation
• muRISCV-NN compared directly to TFLM default and muRISCV-NN scalar kernels
• muRISCV-NN compared to same scalar kernels autovectorized by LLVM

Results:

Performance
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(a) toycar
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(b) resnet
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(c) vww

TFLM
Reference

muRISCV-NN
Scalar

muRISCV-NN
Vector

0

2

4

·107

In
fe
re
n
ce

T
im

e
(#

In
st
rs
.)

Unvectorized Autovectorized Manual

Scalar VL=128 VL=256 VL=512 VL=4096

(d) aww

RAM Overheads

TFLM
Reference

muRISCV-NN
Scalar

muRISCV-NN
Vector

Model Arena [kB] ∆ (%)
toycar 2.4 +5.0% +283.3%
resnet 54.4 +1.1% +1.2%
vww 100.7 +0.0% +0.1%
aww 22.8 +0.0% +19.7%

ROM Overheads

TFLM
Reference

muRISCV-NN
Scalar

muRISCV-NN
Vector

Vect. - - Auto Manual
Model ROM [kB] ∆ (%)
toycar 342.1 +1.2% +2.2% +1.4%
resnet 188.3 +8.0% +14.1% +8.5%
vww 420.5 +5.4% +8.0% +5.5%
aww 146.7 +15.6% +23.1% +15.7%

Observations:

• Performance increase of 2x or greater over the default TFLM kernels
• On average, 27.5% to 38.2% faster than autovectorized kernels for the smallest and

largest vector lengths respectively
• Greatly improved performance from manually vectorizing depthwise convolutions
• Minimal additional ROM overhead from less aggressive loop unrolling

Future Work

• Support for sub-byte and mixed precision models
• Compile-time selection between kernels optimized for different targets
• Benchmarking of muRISCV-NN on open source RTL implementations of Zve32x
• Deployment of muRISCV-NN on commerical RISC-V Vector processors
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