Design, Implementation and Evaluation of the **SVNAPOT Extension on a RISC-V Processor**

Nikolaos-Charalampos Papadopoulos¹, Stratos Psomadakis¹, Vasileios Karakostas², Nectarios Koziris¹, Dionisios Pnevmatikatos¹

ncpapad@cslab.ece.ntua.gr

1. National Technical University of Athens – 2. National and Kapodistrian University of Athens

Motivation

The RISC-V SVNAPOT Extension aims to remedy the performance overhead of the Memory Management Unit (MMU) under heavy memory loads, by introducing intermediate Naturally-Power-Of-Two (NAPOT) multiples of the 4K, 2M and 1G page sizes.

i	pte.ppn[i]	Description	$pte.napot_bits$	
0	x xxxx xxx1	8 KiB contiguous region	1	
0	x xxxx xx10	16 KiB contiguous region	2	
0	x xxxx x100	32 KiB contiguous region	3	
0	x xxxx 1000	64 KiB contiguous region	4	
0	x xxx1 0000	128 KiB contiguous region	5	
	••••			
1	x xxxx xxx1	4 MiB contiguous region	1	
1	x xxxx xx10	8 MiB contiguous region	2	

 64KB is the default candidate as per the RISC-V Privileged Specification • It is also implemented in Linux v6.8 with the MAP_HUGE_64KB flag

Considerations on the Memory Management Unit

- Small (4K) pages may stress the MMU & increase TLB misses
- Huge (2M, 1G) pages may alleviate TLB stress & reduce TLB misses
 - → but may cause **internal & external fragmentation**

Intermediate page sizes (64K) open up new research opportunities in MMU design trade-offs and offer potential for fine-tuning performance overheads and memory management

Design & Implementation

- **Higher order INDEX selection impacts** conflict misses for 4K pages
- ★ Higher associativity may eliminate TLB conflicts

★ 64K pages save 3-5% overall cycles

pages

★ 64K Pages exhibit up to 16x larger reach **\bigstar** 4K \rightarrow 4MB reach, 64K \rightarrow 64MB reach

compared to 4K pages due to less PTWs

\bigstar One PTW for a 64K page \rightarrow 16 PTWs for 4K