
▪ Virtual Prototypes (VPs): Binary compatible executable SW models of real HW

▪ RISC-V VP++

▪ Free- and open-source SystemC TLM based RISC-V VP

▪ RV32/RV64, Exceptions/Interrupts, MMU, Peripherals

▪ Configurations: uC/Application-processor based, Single-/Multi-core

▪ RVV supported in all configurations

▪ Graphics output, Mouse/Keyboard input via VNC

▪ Linux support → GUI-VP Kit [2]

Manfred Schlägl Daniel Große
Institute for Complex Systems, Johannes Kepler University Linz

manfred.schlaegl@jku.at, daniel.grosse@jku.at

Bounded Load/Stores in Grammar-based
Code Generation for Testing the RISC-V

Vector Extension

Introduction
▪ RISC-V open-standard and modular ISA

▪ Very small base ISA (RV32I / RV64I)

▪ Various extensions (e.g. Mult/Div, Float, Compressed, …)

▪ RISC-V “V” Vector Extension (RVV)

▪ Motivation: Exploiting data-level parallelism → Working on multiple

elements of data (=vector) simultaneously to increase data throughput

▪ Extensive Single Instruction, Multiple Data (SIMD) capabilities
▪ Instructions act on vectors in dedicated registers (v0 - v31)

▪ Function of instructions highly dependent on configuration (vl, vtype)

▪ Powerful set of load/store instructions

Very extensive and complex RISC-V extension → Verification challenging

This work has been partially supported by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

RISC-V VP++ with RVV [1]

RISC-V "V" Vector Extension (RVV) version 1.0

32 vector registers and 7 control/status registers added

Generic implementation of 624 instructions

Integration in RV32 and RV64 Instruction Set Simulator (ISS) → Code generator

Verification of RVV in RISC-V VP++
Approach presented in original Paper [1]

▪ Instruction Sequence Generator (ISG) FORCE-RISCV

▪ Trace comparison Simulator under Test (SUT) with Reference Simulator (REF)

→ 81.44% coverage → Limited by ISG and missing coverage feedback

New Approach:

Grammar-based ISG + Coverage-guided + Machine state comparison

→ >94% coverage

Resources

RISC-V VP++ Bounded Load/Store Paper

RISC-V "V" Vector Extension (RVV) version 1.0

32 vector registers and 7 control/status registers added

Generic implementation of 624 instructions

Integration in RV32 and RV64 Instruction Set Simulator (ISS) → Code generator

Context-free ISG Grammar for RVV

▪ Non-terminal symbols: pointed brackets (e.g. “<start>”)

▪ Terminal symbols: without pointed brackets (e.g. “, v0.t”)

▪ Each line is an expansion rule = A list of expansion alternatives

▪ Expansion: Select alternative randomly, repeat until no non-terminal sym. left

→ Examples: “vadd.vv v2, v3, v4”, “vadd.vx v0, v3, x3, v0.t”, …

Context-free grammar is able to generate RVV load/stores

Example: RVV unit-stride store of vector register v1 to memory at address in x5

vse8.v v1, (x5) // RVV unit-stride store

Problem: Value of x5 likely not pointing in a valid address range (esp. RV64)

Solution: Bounding of address values → Generate code to ensure valid x5

Problem: Bounding not efficiently expressible in context-free grammar

Solution: Extending grammar with function symbols (context-free behavior)

Bounded Load/Stores

Expansion of <instr_v_store_vse8>→ call of gen_v_store_vse8

Example: Generated code for vse8.v

VALID_START = 0x801a0000; VALID_LEN = 1.5 MiB; MAX_STORE_LEN = 512 B

li x9, 0xfffff // set upper_bound_mask

and x5, x5, x9 // apply upper_bound_mask

li x9, 0x801a0000 // set lower_bound_offset

add x5, x5, x23 // apply lower_bound_offset

vse8.v v1, (x5) // RVV unit-stride store

→ RVV unit-stride store bounded to memory area [0x801a000:0x811A1FF]

References
[1] M. Schlägl, M. Stockinger, and D. Große, “A RISC-V “V” VP: Unlocking vector processing

for evaluation at the system level,” in DATE, 2024, pp. 1-6.

[2] M. Schlägl and D. Große, “GUI-VP Kit: A RISC-V VP meets Linux graphics - enabling

interactive graphical application development,” in GLSVLSI, 2023, pp. 599–605.

RISC-V "V" Vector Extension (RVV) version 1.0

32 vector registers and 7 control/status registers added

Generic implementation of 624 instructions

Integration in RV32 and RV64 Instruction Set Simulator (ISS) → Code generator

Progress & Outlook
RVV contains powerful load/store instructions supporting complex data structures

(e.g. strided, indexed)

→ Concept is applicable to all RVV load/store instructions

→ Implementations for all RV32/64I and RVV load/store instructions

included in our new verification framework

Will be presented and released as open-source later this year

