Wearable Biomarker Processing using Speckle Plethysmography based on an Embedded RISC-V ASIP

Fraunhofer Institute for Microelectronic Circuits and Systems

Stephan Nolting¹, Ingo Hoyer¹, Holger Kappert¹, Guenter Grau², Cas Bramer³ and Alexander Utz¹

¹ Fraunhofer Institute for Microelectronic Circuits and Systems (IMS), Department for Smart Sensor Systems, Duisburg, Germany

² advlCo microelectronics GmbH, Recklinghausen, Germany

³ Praxa Sense, Delft, The Netherlands

This project has received funding from the Eurostars-2 joint programme with co-funding from the European Union Horizon 2020 research and innovation programme

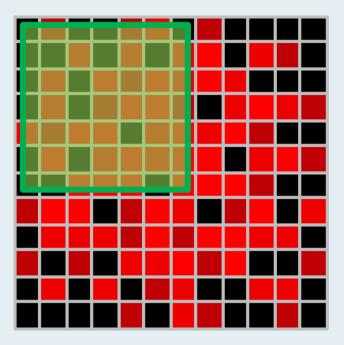
Introduction

Increasing load of healthcare system

- Demand for remote patient monitoring (without hindering the patients)
- Provide physicians with everyday health insights
 (e.g. blood pressure, heart rate, blood O₂ saturation)

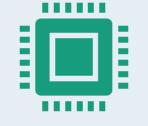



State of the art: PPG


- PPG (photoplethysmography): use illuminated tissue to track blood vessel contractions via (IR) LEDs + photodiodes; extract biomarkers from intensity fluctuations
- Quality suffers from everyday situations, such as motion artifacts

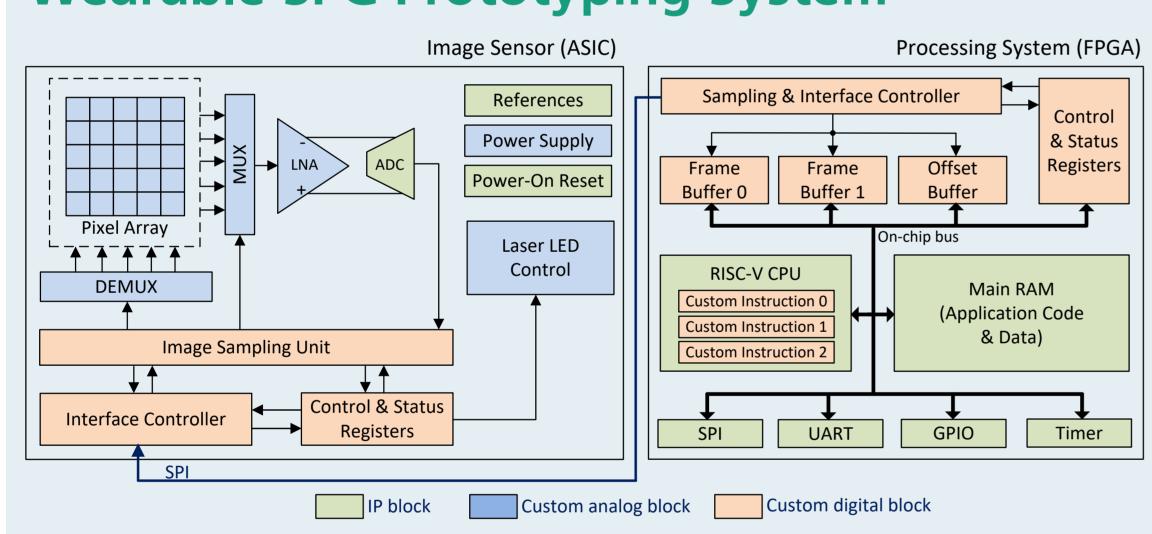
Promising candidate: SPG

- Speckle plethysmography
- Less susceptible to disruption due to patient movement or skin type (i.e. melanin count) [1,2]



(a) tissue sampling

(b) obtained speckle image (c) window-based processing


Speckle plethysmography and biomarker data extraction

- Illuminate blood vessel with coherent light (a)
- Blood particles reflect light causing an interference pattern ("speckle") (b)
- Sample and digitize speckle image and process in window-based processing (c) scheme to obtain vital parameters

Our approach: a wearable platform based on a RISC-V Application-Specific Instruction-Set Processor (ASIP)

Wearable SPG Prototyping System

Block diagram: image sensor (left), RISC-V-based processing system (right)

Image Sensor (ASIC)

- Dedicated imager sensor manufactured in 180nm CMOS, 2.1mm x 2.1mm die size
- Highly-adjustable image sampling characteristics (e.g. exposure time)

Test array for characterization **Photo diodes** 64 x 64 pixel ADC 12-bit, SAR, 1.25MS/s Readout logic row/column multiplexer **Analog helpers** amplifiers, PoR, references, laser driver, etc. **Digital control** SPI, control and status registers, finite state machines

Processing System (ASIP on FPGA)

RISC-V-based processor system

- Base ISA extended with application-specific custom instructions [3]
- Base SoC extended with DMA-based SPI connection to imager chip + special framebuffers to allow double-buffering while processing one speckle image

Requires ~5000 LUT4s, running at 24MHz on a Lattice iCE40up5k FPGA, extracting vital parameters from 15 frames per second [3]

Future Work

- Targeted speckle processing framerate: 30fps; further algorithm profiling to add/optimize additional ISA extensions
- In-vitro testing with portable (wireless) FPGA board
- Monolithic ASIC integration: speckle sensor + RISC-V ASIP on single chip
- Long-term goal: integration into medical patches and smart watches

Contact

Stephan Nolting

stephan.nolting@ims.fraunhofer.de Fraunhofer IMS, Duisburg, Germany

www.ims.fraunhofer.de

[1] Nemati M. et al. "Dynamic light scattering from pulsatile flow in the presence of induced motion artifacts" Biomed Opt Express, 2014
[2] Cody E. et al. "Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements" Biomed. Opt. Express 9, 2018

[3] Nolting S. et al. "Developing Custom RISC-V ISA Extensions for General Purpose Embedded Image Processing", RISC-V Summit EU 2023

