
RISC-V Open Source Compiler Performance
Is it Good Enough?

Jeremy Bennett, Craig Blackmore, Paolo Savini, Embecosm

How to measure compiler performance

GCC v Clang/LLVM

RV64 v x86_64 v AArch64

Improvements over time

Key benchmark criteria:
● based on multiple real programs, which are open source, or at least readily available
● able to benchmark code speed, code throughput (application cores) and code size (microcontrollers)
● an easily understood and reproducible score, fairly based on the performance of all programs
● updated regularly, to avoid being gamed by compilers.

Chosen benchmarks:
● Microcontrollers: Embench 1.0 and 2.0
● Application class cores: SPEC CPU 2006 and 2017

Embench 1.0 code size scores using GCC 10.0 and Clang/LLVM 9.0

SPECint 2006 normalized to 1GHz clock for RV64 (MILK-V Pioneer), x86_64 (AMD Ryzen Threadripper 1950X) and
AArch64 (Apple M1)

Embench 1.0 scores for Arm Cortex M1 (16MHz) and CV32E40Pv1 FPGA (10MHz)

A huge thank you to our collaborators and supporters: OpenHW Group, the Embench Group
and Dolphin Design.

www.embecosm.com

The impact of ISA Extensions: RISC-V Vector (RVV)

Impact of LTO and PGO

The community

LTO and PGO are both powerful optimizations, although not always beneficial. RISC-V suffers from a buggy LTO
implementation, while its PGO is hampered by the relatively short range of branches

Central to development of the compiler tool chain is the community, and particularly the small band of
contributors who make the majority of the changes. The table below looks at various metrics from the commit
log for GCC 14.1. These are commits tagged as being either RISC-V or Arm/AArch64. One point of note is that
in both cases more than half the commits come from two contributors for the same company. Perhaps not
surprising for Arm, but for RISC-V?

We use QEMU instruction counts as a (crude) proxy
for code speed. SPEC CPU 2017 ratios are based on
run times, so we convert instruction counts as though
they were for a machine executing 109 instructions
per second.

The runs were performed with LTO enabled in both
cases, which is known to be buggy on RISC-V. We only
show results for the 15 benchmarks which ran
successfully both with and without RVV.

For six benchmarks, instruction counts increased
marginally with RVV enabled (in all cases by < 1%).
RVV is particularly effective with a small subset
(3 benchmarks showing a >20% improvement).

Overall we see a 9.4% improvement.

RISC-V Targets Arm Targets x86_64 Targets
CV32E40Pv2 on Nexys A4 FPGA @ 15MHz STM32F407 @ 16MHz AMD Threadripper 1950X @ 3.4GHz

HiFive Unmatched @1.4GHz Apple M1 @ 3.8MHz
MILK-V Pioneer @ 2.0GHz QEMU User Mode

QEMU User Mode

SPEC 2006 Dyn inst. count
401.bzip2 -2.7%
403.gcc -2.1%
429.mcf -6.0%
445.gobmk -9.1%
456.hmmer -44.5%
458.sjeng -10.6%
462.libquantum 148.2%
464.h264ref -23.6%
471.omnetpp -9.7%
473.astar -20.2%
483.xalancbmk -13.0%
Geometric mean -6.4%
RISC-V QEMU instr count
red = more LLVM instructions

0.0

20.0

40.0

60.0
RV64
x86_64
AArch64

7.5 8.5 9.5 10.4 11.3 12.3 13.1 14.1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Embench Speed (higher is better)

Arm M4
RV32IMC

GCC version

Em
be

nc
h

Sc
or

e/
M

H
z

7.5 8.5 9.5 10.4 11.3 12.3 13.1 14.1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Embench Size (lower is better)

Arm M4
RV32IMC

GCC version

Em
be

nc
h

Sc
or

e

ISA extensions with iterative optimization
We combine two techniques to improve
Embench code size on the CV32E40Pv2.
First we select the memory (xcvmem) and
multiply accumulate (xcvmac) ISA
extensions. Then we apply iterative
compilation to identify specific GCC
optimizations to further improve code size.

After 37 iterations, we have improved the
code size by 7.3%. The final set of compile
line options are:

0 10 20 30
0.96

0.98

1.00

1.02

1.04
CV32E40Pv2 ISA extensions and iterative elimination

Iteration

Em
be

nc
h

Si
ze

 S
co

re
 (s

m
al

le
r i

s
be

tt
er

)

-march=rv32imac_xcvmac_xcvmem -ffunction-sections -msave-restore -Os --param=gcse-unrestricted-cost=0 \
 --param=iv-consider-all-candidates-bound=48 --param=loop-invariant-max-bbs-in-loop=0 \
 --param=max-hoist-depth=0 --param=max-predicted-iterations=0 --param=sink-frequency-threshold=100 \
 -fno-caller-saves -fipa-pta -fno-ipa-reference-addressable -fno-math-errno -fno-reorder-functions \
 -fno-signed-zeros -fno-tree-forwprop -msmall-data-limit=2

0.00

1.00

2.00

3.00

4.00 SPECint 2017 QEMU Instruction Counts

RV64GC

RV64GCV

Benchmark

N
om

in
al

 S
PE

C
ra

tio

Results obtained using GCC 14.0.1 of 24 April 2017.
For both runs Glibc was built without RVV enabled.

-20%

-10%

0%

10%

20%

30% SPECint 2006 RV64GC

LTO
PGO
LTO+PGO

Benchmark

Sp
ee

du
p

ov
er

 b
as

e

-20%

-10%

0%

10%

20%

30% SPECint 2006 x86_64

LTO
PGO
LTO+PGO

Benchmark

Sp
ee

du
p

ov
er

 b
as

e

Metric RISC-V Arm
Commits 1,058 611
Committers 45 43
Biggest contribution 363 173
Committers making 90% of commits 15 13
Corporate contributors 16 12 0 10 20 30 40

0%

10%

20%

30%
Proportion of commits by individuals

Arm
RISC-V

Committer #

Sh
ar

e
of

 c
om

m
its

ah
a-
mo
nt
64

cr
c3
2

cu
bi
c

ed
n

hu
ff
be
nc
h

ma
tm
ul
t-
in
t

mi
nv
er

nb
od
y

ne
tt
le
-a
es

ne
tt
le
-s
ha
25
6

ns
ic
hn
eu

pi
co
jp
eg

qr
du
in
o

sg
li
b-
co
mb
..
.
sl
re st

st
at
em
at
e ud

wi
ki
so
rt

0.0

0.5

1.0

1.5

GCC v Clang/LLVM code size GCC
Clang/LLVM

Em
be

nc
h

sc
or

e
(s

m
al

l i
s

go
od

)

	Slide 1

