Selecting **different RISC-V ISA extensions** for compiling **impacts** on **soft error sensitivity**

Comparison of sensitivity to soft errors, depending on ISA extensions, for RISC-V cores VeeR EH1 and EL2 from Western Digital

• Space Radiation may produce soft errors

+60% of +8.000 satellites in the last 3 years

- RISC-V coming to space applications
- Commercial CPUs for non-critical tasks

May ISA compiling-target selection improve radiation resilience?

Result 1: Error rate in EH1 and EL2 when C code is compiled for different ISA targets.

Result 2: Soft error rate by core unit. The **DEC** unit is the **most sensitive** for both processors.

SED: Single Event Delay – DUE: Detected Unrecoverably Error – SDC: Silent Data Corruption

Experiment 20 campaigns 3	00.000 injections Microarch	itecture Registers 99% C.L. 1% error
<image/>	INJECT • • • • • • • • • • • • • • • • •	Non-intrusive Based on partial reconfiguration 5 injections per second RASPBERRY PI TAG PMod GPIO SQL Database

Conditions: These findings apply to Veer EH1 and EL2 RISC-V processor cores using three baremetal C programs: SHA256, Dot product and CSSDS 123.0-B-2 Hyperspectral compression algorithm.

Daniel León¹, Juan C. Fabero², Juan A. Clemente²

1: Universidad Francisco de Vitoria - 2: Universidad Complutense de Madrid