
Sizalizer: Analysis Framework for ISA Optimization
Andreas Hager-Clukas, Hochschule München

Computer Science and Mathematics
Supervisor: Prof. Stefan Wallentowitz

Motivation

Most microprocessors are produced for embedded systems [1]. The Information and Communication Technology (ICT) industry contributes between
1.8 % and 2.8 % to the Global Greenhouse Gas (GHG) emissions footprint [2], a statistic that is on an upward trajectory and is anticipated to
maintain its climb [3]. To mitigate this upward trend, it’s imperative to forge improved methodologies in both hardware and software engineering
that match strides with the rapid progression of technology yet do not exacerbate GHC impacts. One promising route is the refinement of the
Instruction Set Architecture (ISA), where enhancements can lead to existing programs being executable within a reduced memory footprint. This is
particularly applicable for embedded microprocessors that are designated to operate a single application or only applications with domain-specific
characteristics, paving the way for the utilization of smaller-scale processors a move that inherently cuts costs. Progressive evolution of current ISAs,
like RV32, calls for a profound understanding of the system designer’s software prerequisites. Alas, the gap remains in the lack of an analytical
framework that scrutinizes and interprets software within the embedded sphere to facilitate constructive refinement of the ISA under examination.

Framework

Clang

Disassembler

IR DFG

DFG Generation Pass

RV32 Assembly

DFG Analysis Static Analysis

Runtime Trace

Trace Plugin

Trace Analysis

ETISS

Results

Source Binaries

The architecture of Sizalizer is organized into a three-tiered analyti-
cal framework. This hierarchical model is visually represented in the
Figure, which illustrates the extraction of relevant data at progressive
stages. Source and build artifacts denoted in red, analysis modules in
yellow, and data representations for permanence in blue.
The analytical process consists of three distinct layers. The uppermost
layer involves the interprocedural data flow throughout the entire pro-
gram. The corresponding Data Flow Graph (DFG) is synthesized from
the LLVM Intermediate Representation (LLVM-IR) during an analy-
sis pass while compiling the source with the C/C++ compiler, Clang.
Because of its LLVM foundation, Clang is an ideal choice for enhance-
ments. The well-defined nature of LLVM-IR serves as a robust founda-
tion for subsequent analysis. The generated DFG is stored in the graph
database, Memgraph, which is selected for its accessible and perfor-
mant C++ interface [5]. Memgraph also has exceptional performance
compared to other graph databases, such as Neo4j [4]. An external
program interfaces with Memgraph to derive pertinent statistics and
structures related to the analysis target. Furthermore, the use of the
graph query language Cypher enables pattern and structure match-
ing within the DFG, thereby extending the potential of static analysis
through a standardized interface and interchangeable client.
The second analytical layer focuses on the static machine code level
and operates on executable binary programs, or binaries. This anal-
ysis specializes in the RISC-V 32-bit target ISA, processing binaries
in ELF format and conducting an evaluation that includes static code
size, code content, and code entropy analysis. The resulting assembly,
presented in Intel syntax, is the only component suitable for persis-
tence in a separate file. The objdump tool generates this assembly,
which is then parsed and examined by the static analyzer.
The final evaluative layer pertains to execution investigations con-
ducted with the instruction set simulator, ETISS [6]. Its flexibility in
simulating any ISA at the instruction level makes it an indispensable
tool. Binaries are executed within the simulator, with each instruction
and its register values captured in a detailed runtime trace. This trace
file is then further examined by the trace analyzer.

Results

ah
a-

m
on

t6
4

cr
c3

2
cu

bi
c

ed
n

hu
ffb

en
ch

m
at

m
ul

t-
in

t
m

in
ve

r
nb

od
y

ne
tt

le
-a

es
ne

tt
le

-s
ha

25
6

ns
ic
hn

eu
pi

co
jp

eg
qr

du
in

o
sg

lib
-c

om
bi

ne
d

sl
re

st
at

em
at

e st ud
w

ik
is
or

t0

20

40

Im
pr

ov
em

en
t

in
%

Sizalizer uses the statistics and structures to graphically represent
them for the target audience. The results are also used to suggest
improvements. For Embench, for example, a replacement of 32-bit
instructions with 16-bit compressed variants is proposed. In this case,
the lw instruction ranks first among the 32-bit instructions found, both
statically and dynamically. The immediate value is by far the most fre-
quent value, with more than one million occurrences out of 2.5 million
lw instructions executed, followed by the value 4. However, these val-
ues can also be represented in the smaller immediate range of a 16-bit
compressed instruction. For such direct replacements, the improve-
ment potential is also calculated for each of Embench’s benchmarks,
depicted in Figure ??. Blue bars represent static and green bars dy-
namic improvement. The improvement potential is an upper bound
on the code size reduction by completely replacing the given 32-bit
instructions with their 16-bit variants. There is an improvement po-
tential of 31 % for the static code size and 34 % for the dynamic code
size.

References

[1] Christof Ebert and Capers Jones. “Embedded software: Facts, figures, and
future”. In: Computer 42.4 (2009), pp. 42–52.

[2] Charlotte Freitag et al. “The real climate and transformative impact of ICT:
A critique of estimates, trends, and regulations”. In: Patterns 2.9 (2021).

[3] Andrew J Jarvis, David T Leedal, and C Nick Hewitt. “Climate–society feed-
backs and the avoidance of dangerous climate change”. In: Nature Climate
Change 2.9 (2012), pp. 668–671.

[4] Ante Javor. Memgraph vs. Neo4j: A Performance Comparison. URL: https:
/ / memgraph . com / blog / memgraph - vs - neo4j - performance - benchmark -
comparison. (accessed: 05.03.2024).

[5] Memgraph. URL: https://memgraph.com/. (accessed: 20.03.2024).

[6] Daniel Mueller-Gritschneder et al. “The Extendable Translating Instruction
Set Simulator (ETISS) Interlinked with an MDA Framework for Fast RISC
Prototyping”. In: 2017 International Symposium on Rapid System Prototyp-
ing (RSP). 2017, pp. 79–84.


