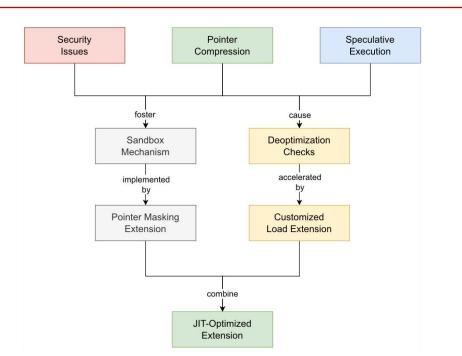
Optimizing Chrome V8 Just-In-Time Compilation Based on RISC-V J and Customized Instruction Extension

Qiaowen Yang and Zhangxi Tan* RISC-V International Open-Source Laboratory, TsingHua University

OVERVIEW

This work proposes and implements an RISC-V extension to accelerate the Just-In-Time (JIT) compilation in the open-source Chrome V8 engine. The new extension is composed of the pointer masking specification from the RISC-V J extension and self-designed supplementary instructions tailored for V8's dynamic checks. Our results present the potential this extension shows in reducing instruction count and improving performance.

BACKGROUND AND OBJECTIVES


- Dynamic checks in V8's JIT compilation can benefit from hardware-software co-design implementation
 - Sandbox and pointer compression
 - Deoptimization checks from type speculation
- Integrate part of RISC-V J extension to V8
 - Our focus: pointer masking, which has been finalized
 - The J extension also includes other meaningful specifications
 - I/D consistency
 - Memory tagging: under active discussion

DESIGN AND IMPLEMENTATION

 Accelerate sandbox mechanism with pointer _____

RESULTS AND CONCLUSION

- For pointer masking
 - V8 by default disables the sandbox and pointer compression for RISC-V, which cause extra overhead
 We enable them and focus on the performance improvement the pointer masking brings

V8 JIT optimization roadmap

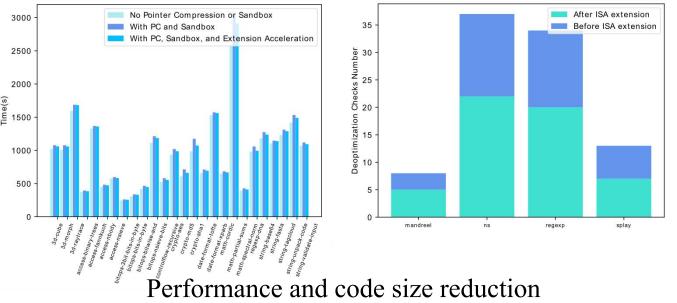
masking extension

- Hardware-assisted method: nearly agnostic to the software
- We also explore the possibility of moving the whole sandbox mechanism to hardware Ar

branch test_smi branch save pc exception handler

An example of new instructions

- Optimize deoptimization checks using customized memory instructions
 - Objectives: checks related to compressed values


• Implementation

- Add nodes to V8's IR graph structure
 - For customized instructions, we need to merge nodes to generate new ones
- Modify the code generation phase to make room for new instructions
- Leverage pointer masking extension to control the access to untrusted pages

* Corresponding author: <u>xtan@rioslab.org</u> Contact me: <u>yqw21@mails.tsinghua.edu.cn</u>

• For supplementary instructions

• We focus on the reduction of deopt checks generated by V8, and observe a 3% cut-down in the # of insts

Conclusion

- The pointer masking extension shows its potential in mitigating the overhead of V8's security mechanisms
- The changes to V8 incorporating our customized instructions yield a satisfactory outcome in cutting down on the generated code size

