
DESIGN AND IMPLEMENTATION

Optimizing Chrome V8 Just-In-Time Compilation
Based on RISC-V J and Customized Instruction Extension

Qiaowen Yang and Zhangxi Tan*
RISC-V International Open-Source Laboratory, TsingHua University

OVERVIEW
This work proposes and implements an RISC-V extension to accelerate the Just-In-Time (JIT) compilation in
the open-source Chrome V8 engine. The new extension is composed of the pointer masking specification
from the RISC-V J extension and self-designed supplementary instructions tailored for V8’s dynamic checks.
Our results present the potential this extension shows in reducing instruction count and improving
performance.

BACKGROUND AND OBJECTIVES

* Corresponding author: xtan@rioslab.org
 Contact me: yqw21@mails.tsinghua.edu.cn

• Dynamic checks in V8’s JIT compilation can benefit from
hardware-software co-design implementation
• Sandbox and pointer compression
• Deoptimization checks from type speculation

• Integrate part of RISC-V J extension to V8
• Our focus: pointer masking, which has been finalized
• The J extension also includes other meaningful specifications

• I/D consistency
• Memory tagging: under active discussion V8 JIT optimization roadmap

load decompress

load_smi

cmp branch

test_smi
save pc

exception handler

shift

add base

• Accelerate sandbox
mechanism with pointer
masking extension
• Hardware-assisted

method: nearly
agnostic to the
software

• We also explore the
possibility of moving
the whole sandbox
mechanism to
hardware

• Optimize deoptimization
checks using customized
memory instructions
• Objectives: checks

related to compressed
values

• Implementation
• Add nodes to V8’s IR graph structure

• For customized instructions, we need to
merge nodes to generate new ones

• Modify the code generation phase to make
room for new instructions

• Leverage pointer masking extension to
control the access to untrusted pages

An example of new instructions

RESULTS AND CONCLUSION
• For pointer masking

• V8 by default disables the sandbox and pointer
compression for RISC-V, which cause extra
overhead

• We enable them and focus on the performance
improvement the pointer masking brings

• For supplementary instructions
• We focus on the reduction of deopt checks

generated by V8, and observe a 3% cut-down
in the # of insts

• Conclusion
• The pointer masking extension shows its

potential in mitigating the overhead of V8’s
security mechanisms

• The changes to V8 incorporating our
customized instructions yield a satisfactory
outcome in cutting down on the generated
code size

Performance and code size reduction

