RISC-V Opt-VP:

An Application Analysis Platform Using Bounded Execution Trees

Jan Zielasko^{1,2}, Rune Krauss¹, Marcel Merten¹, Rolf Drechsler^{1,2}

- ¹ Institute of Computer Science, University of Bremen, Germany
- ² Cyber-Physical Systems, DFKI GmbH, Germany

Jan.Zielasko@DFKI.de

1. Abstract

Tailoring hardware to applications significantly increases their performance, which is required to meet the rising demand for resource-limited devices. While RISC-V facilitates application specific solutions due to its extensibility, Virtual **Prototypes** (VPs) enable early software development before the actual hardware is built. We combined the advantages to create a tool for analyzing applications for hardware optimization. Here, we present the RISC-V Opt-VP, which generates bounded execution trees to analyze applications. An embedded application case study illustrates that **promising instruction sequences** are found for every application, which can also be merged to further improve their execution coverage, enabling efficient hardware designs.

4. Evaluation

- Analyze Embench and RIOT
- Over 30% expected coverage on average

	Root	Len	Weight	Total #	NP
aha-m64	SRLI	11	162432	4532K	185.0
crc32	JAL	12	175104	3846K	71.5
edn	LH	5	290400	3483K	104.2
huffbench	ADDI	1	661440	$2515\mathrm{K}$	1
$\operatorname{matm-int}$	ADD	5	357200	4426K	80.7
${ m md5sum}$	SLLI	24	39936	2339K	105.3
minver	SW	5	100114	2818K	88.8
nettle-aes	LW	31	32864	4481K	99.7
slre	SW	7	107007	$2570 \mathrm{K}$	204.0
RIOT	ADDI	1	3893	13K	1
Average	_	6.52	339986	30.95%	59.76

2. Virtual Prototype Driven Tracing

- Extend RISC-V Virtual Prototype
- Tracing module interfacing ISS core
- Construct bounded execution trees
- Lossless compression of trace information
- Identify promising hardware optimization candidates based on recurring patterns

3. Analysis

- Analyze trees using a set scoring function
- Choose a set of metrics that matches the target hardware optimization
- E.g. $Score(Seq) = weight_{Seq} \cdot #Instructions$

5. Sequence Merging

- **Extend** sequences to increase potential merge options:
 - □ Default
 - Subsequence
 - Variant
- Evaluate possible mappings

- Create **new merged sequence**
- Drastically increased coverage (> 600%)
- Negligible overhead

Available on GitHub:

- https://github.com/agra-uni-bremen/opt-vp
- https://github.com/agra-uni-bremen/opt-seq

Federal Ministry of Education and Research

Funded by:

SUB