Accelerating Unicode Conversions using the
RISC-V Vector Extension

Olaf Bernstein

Motivation RISC-V Vector Extension simdutf library|1}

» The majority of digital text is stored in UTF-8 format « Vector length agnostic

e Vectorized Unicode conversions for different ISAs:

o 'Tail and mask predicated instructions SSE, AVX, AVX2 AVX512, NEON, now: RVV

» Powertul compress and gather permutations Used in popular libraries: Node.js and Bun

 Very orthogonal instruction set

« Some languages and APIs use other formats internally, e.g.
UTEF-16 is used by JavaScript, Java and Windows

« Conversion can be optimized by processing multiple char-

acters in parallel, leading to large speedups
« LMUL register grouping

RVYV simdutf backend Performance Exploration UTF-8 to UTF-16 conversion
« Vectorized all routines® Alongside this work, we developed a collection of RVV bench- - Validate UTF-8 using 3 4-bit LUTSs [3]
» About 1K lines of code (V5 of custom mzrks to help developers write performance portable RVV « Identify character positions

|2

AVX512 backend) code. {2 Extract all leading UTF-8 bytes and the three following bytes into
 Optional Zvbb for endianness reversal four separate vector registers
*We vectorized all routines that were supported as of March o Remove preﬁxes
%OT%; 32T}iat.is, all conversions betweeg UTF—.S7 UTF—16, Optlmlzat 101N TeChIllqueS « Clombine to UTF-32 code pOiIlt

-32, latinl, as well as the respective validation and

s N o it Lt paths + Convert code points >0FFFF to sumogate pais
iet. We’vehalready exi)loredda }fevx;l implementation Ztrate}glies(i e unroll LMUL=1 vrgather.vv, when not Cl"OSSil’lg lanes « Remove upper 16-bit of code points <OxFFFF

owever, the current limited hardware variety made 1t har
to decide which one would perform best on the majority of « avoid LMUL=8 vcompress.vm, due to current hardware

future hardware. : .. : 11 :
 otherwise maximize LMUL without spilling, which amor-

tizes scalar and mask instructions Test H ardware
C908 C920 X60
o 0 o 39 & 9 ; ' :
Vlsuallzed ConverSIOn Of rvv:) Vendor XU&HTIG XU.&HTIG SpacemlT
Vector extension RVV 1.0 XTheadVector RVV 1.0
character r \Y V 2
UTF-8 01110010 11001110 10111101 11100001 10111001 10111111 11110000 10011111 10100111 10011001 scalar ISA RV64GCB RV64GC RV64GCB
identify |01110010|11001110]10111101 11100001 10111001 11110000/ 10011111
byte 1 |01110010|11001110|11100001|11110000 01110010 00001110 | 00000001 | 00000000 VLEN 128 128 256
byte 2 |11001110/10111101/10111001/10011111| remove |00001110/00111101 00111001 00011111 ,
byte 3 |10111101|11100001 prefixes|00111101| 0010000100 00 Dispatch 2x064 2x128 2x128
byte 4 |11100001]10111001|11110000 00100001]00111001]00110000|00 Exectition model | incorder | out-oforder | inorder
00000001110010001110111101100001 00000000000000000000000001110010
w1den.and 00000000001110111101100001111001 |shift to 00000000000000000000001110111101 Note: Our simdutf backend only supports X TheadVector using GOCs
combine 00000000000001111001 110000 UTF-32 00000000000000000001111001 i i RV intaing X TheadV L e bench
00000000000000011111 00000000000000011111 capability of compiling INtrnics to cadvector, but the bench-

T T T marks include measurements from manually ported assembly.

Performance Improvements Comparison with processors of other vector ISAs
2 110008 scalar 00920 scalar NIX60 scalar 1
1| 1coos Rvv Ulco20 Rvv LIX60 RVV)
03 i 0.8
0.25 |
0.2 i 0.7
015 i 0.6
0.1 I
005 i 0.5
suwl w0 e
. QQ '»\\' %QJ Q’ 0.4
X NG S & &
\) /\%xéo Q) xcb@(b) /\&O 0.3
Figure 1: UTF-8 to UTF-16 (input bytes/cycle) 0.2 || ‘I l I || i Il I‘
C Onclusion C908 €920 X60 Cortex-A53 Cortex-A72 Ryzen-1600X
B arabic chinese M czech esperanto french [german [greek [l hebrew hindi japanese
We've managed to effectively use the RISC-V Vector extension to speed up UTF-8 to UTF- Miorean [Mpersan Mportuguese M russian Wthai Mlturkish [vietnamese
16 conversion by on average 3-5 times on real hardware. This and the other supported text Figure 2: UTF-8 to UTF-16 (input bytes/cycle)

conversion functions have been upstreamed to the simdutf library and can now benefit
software using simdutt, e.g. software based on Node.js and Bun.

Future work References More detail
« Vectorize the base64 routines added in the latest version of simdutt 1| Daniel Lemire et al. "simdutf” %‘E& () simdutf/simdutf
 Benchmark on more implementations: SiFive-P670, XiangShan, ... 9] Olaf Bernstein "rvv-bench” O camel-cdr /rvv-bench
« Investigate possible vlut4.vv/vrgatherei4.vv instruction 3] John Keiser and Daniel Lemire. g%‘@ arXiv: abs/2010.03090

"Validating UTF-8 In Less Than
One Instruction Per Byte” (2020)

