The CHERI-RISC-V open-source ecosystem

Peter Rugg, Jonathan Woodruff, Alexandre Joannou, Franz A. Fuchs, and Simon W. Moore Department of Computer Science and Technology, University of Cambridge peter.rugg@cl.cam.ac.uk Project URL: cheri-cpu.org

CHERI-RISC-V Current Supported Stack

Operating System: CheriBSD

Orchestrating memory safety

CheriBSD is a port of FreeBSD that supports 128-bit CHERI pointers.

CheriBSD fully supports

CheriBSD: either **hybrid** or **purecap**.

• **Hybrid** CheriBSD uses 64-bit pointers for kernel objects; pointers from purecap userspace processes are handled as capabilities in the kernel.

Ratification CHERI SIG and TG

https://github.com/riscv/riscv-cheri

Google LowRISC University of Cambridge **RISC-V** International Codasip +more!

Participants in CHERI Special Interest Group represent many organisations.

Herding caps

Shared code base with **Arm's CHERI** Morello

CHERI-RISC-V (version 9).

CheriBSD supports purecap user processes, providing capabilities for pointers in all kernel APIs.

• **Purecap** CheriBSD uses capabilities for all pointers in both the kernel and purecap processes.

Compiler: CHERI Clang/LLVM

Preserving intent in the executable

CHERI Clang/LLVM support	CHERI Clang/LLVM supports code
compilation of C and C++ to both	generation for both CHERI-RISC-V with
hybrid and purecap CHERI-RISC-V.	64-bit and 128-bit pointers (rv32xcheri,
	and rv64xcheri).
CHERI Clang can compile thousands	
of user-space applications and the	CHERI compressed instruction support
CheriBSD kernel.	is included.

Implementations

CHERI-RISC-Vs for every occasion

An AsciiDoc spec...

RISC-V Specification for CHERI Extensions

... with a capability format...

31 30 29	26	25 21	20 19 18	17	12 11 10	9	2	1 0
SDP	AP	Reserved	S EF T8	T[7:2]	TE	B[9:2]		BE
Address								

32

... and instruction definitions!

31 25	24 20	19	15 14 12 11	7	6 0
funct7	rs2!=x0	cs1	funct3	cd	opcode
7 CADD=0000110	5 increment	5 src	3 CADD=000	5 dest	7 OP=0110011
31	20	19	15 14 12 11	7	6 0
imm		cs1	funct3	cd	opcode
12 imm		5		5 dost	

Shared code base with Arm's CHER Morello

CHERIOT

Collaborating and converging

Capability Hardware Enhanced RISC Instructions: **CHERI Instruction-Set Architecture** (Version 9)

- Architecture-neutral CHERI specification, with application to **CHERI-RISC-V**
- Justification of design decisions
- Paths not taken
- Experimental/hypothetical extensions

Sail CHERI-RISC-V

- Formal executable model • Excerpts used in ISA version 9 Used in tandem verification with hardware and simulators via TestRIG
- Supports rv32/rv64

Microsoft Research's instantiation of CHERI for embedded microcontrollers.

Bespoke software stack allows use of more experimental features.

Custom "CHERIoT RTOS"

Emphasis on compartmentalisation and minimising trust.

Standardisation goals:

- Lift limitations (small address size)
- Integrate with specification for rv64
- Generalise to further use-cases
- Support all the features (as another extension)?

SRI International

Parts of this work were supported by DARPA (HR0011-18-C-0016 "ECATS") and Innovate UK ISCF DSbD (105694).

