
Domain Specific Acceleration with High-Level Synthesis
Siemens EDA { Petri Solanti, Russell Klein }

Background

 • Software has many desirable characteristics

 ° Inexpensive to create

 ° Large developer community

 ° Plentiful free open-source frameworks, tools, libraries, stacks, etc.

 ° Easy to patch and update

 - Many systems can be updated over the air/network while in operation

 - Updates deliver bug fixes and new functionality

 • But software is slow and inefficient

 ° Programmer’s model of serial, atomic instruction execution limits implementation parallelism

 ° Large processors are

exponentially power

and area inefficient

 ° Cannot simply use

increasingly larger processors

 • General purpose processors are

reaching their limit

 ° Moore’s law continues

 ° But single threaded

performance for general-

purpose compute has stalled

 ° Adding cores is not effective as software is single threaded

 • David Patterson advocates for “Domain Specific Architectures” to address this challenge

 • Accelerators are needed to deliver both performance and efficiency gains Domain Specific

Accelerators (DSA) extend the base ISA to optimize compute resources in a narrow domain

 • Patterson proposes heterogenous compute based on RISC-V with ISA extensions, co-processors,

and accelerators

 • Creating a Domain Specific Accelerator

 ° Partition – find compute bottlenecks in the base compute architecture by profiling complete

applications, OS, and software stacks, identify opportunities for parallel computation

 ° Design – the hardware implementation of the accelerator, create hardware and software

interfaces

 ° Validate – prove functionality, performance and efficiency of DSA as a standalone element,

and integrate into the larger system of hardware and software

“A New Golden Age for Computer Architecture:
Processor Innovation to Enable Ubiquitous AI,”
a Keynote Presentation from David Patterson

Edge AI and Vision Alliance Summit 2020

Domain Specific Acceleration

High-Level Synthesis

 • Synthesis technology for transforming algorithmic C++ into synthesizable RTL suitable for AISC

or FPGAs

 ° Parses function source and creates control/dataflow graph

 ° Walks graph to discover possible parallelism and data dependencies

 ° Creates a set of state machines and data-path logic to implement

the function

 ° Writes synthesizable RTL description based on

 - user directives for loop unrolling and pipelining

 - target ASIC or FPGA technology

 - target implementation clock frequency

 • HLS enables:

 ° Faster design

 ° Faster verification

 ° Exploration of design alternatives

 • HLS provides early insight into design characteristics

 ° Performance – HLS schedules design, gives early latency and throughput

 ° Power and Area – HLS gives pre-synthesis area estimates based on algorithm and target

technology ASIC library and frequency

 • Early PPA estimates enable informed

architecture decisions

 ° PPA estimates will not be perfect, but are

sufficient for comparison

 • Throughput and latency are calculated from a

clock cycle accurate schedule produced during

synthesis

Power, Performance, and Area

Nand Delay Area
Dyn

Power
Static
Power

0.145 0.023 1.1 0.3

0.137 0.027 1.2 0.5

0.121 0.034 1.4 0.7

0.092 0.04 1.6 0.9

0.071 0.045 2.3 1.1

ASIC Library

 • Area is estimated from a characterized library

and based on combinatorial logic, fanout, and

targeted F
max

 • Power is estimated from library data and

switching activity derived from C++ testbenches

Integration with RISC-V Cores

 • Accelerators can be deployed as co-processors through a co-processor interface or as bus based

accelerators, connected to either local buses or system interconnects

 • Bus based accelerators can be designed as masters or slaves

 ° HLS interface synthesis enables easy connection to popular bus protocols

 ° Accelerators can signal interrupts on completion

 • Software interacts with the accelerator through:

 ° Co-processor instructions

 ° Physically addressable control/status registers

 • Verification is achieved through a combination of formal sequential logic equivalency checks

and dynamic simulation using the C++ as a reference mode, with coverage for both C++ and RTL.

Verification

RTL simulation

Comparison

Synthesized
RTL Design

Tr
an

sa
ct

or

C++
Testbench

Tr
an

sa
ct

or

C++
Design

Co-Processor
Interface

Common
Memory

Synthesized
Accelerator

System Interconnect

AXI, TileLink, etc.

Synthesized
Co-Processor • Experimental results for several compute intensive algorithms showing performance increase

and energy saving per computation as compared to a RISC-V Rocket core on a 12 nm ASIC process.

Example Results

Algorithm Interface
SW perf/
HW perf

SW energy/
HW energy

SHA-256 hash Co-Processor 25 49

Wakeword Bus slave 213 980

Yolo Tiny Bus master 1,123 1,480

Sequential
Logic

Equivalence
Check

C++
Design

Synthesized
RTL Design

https://www.edge-ai-vision.com/category/provider/edge-ai-and-vision-alliance/

