
● if Address A present in cache then
○ if RemapBit(A) == 0 then
■ Cache Hit

○ end if
● else
○ Encrypt A to A’
○ if Address A’ present in cache then
■ if RemapBit(A’) == 1 then
● Cache Hit

■ end if
○ end if

● end if

Selective Cache Re-Mapping to Mitigate
Cache Side Channel Attacks on RISC-V Processors

Pavitra Prakash Bhade
Indian Institute of Technology Goa

India

Olivier Sentieys
University of Rennes, INRIA

France

Sharad Sinha
Indian Institute of Technology Goa

India

Introduction and Contributions

Proposed Algorithms

● if Address A has to evict Address B then
○ if SecretBit(B) == 0 then
■ Replace B with A
■ if A is secret :SecretBit(A) <= 1
■ end if

○ else
■ Encrypt Address A to A’
■ Search replacement location for A’
■ Replace at the found location
■ RemapBit(A’ ) <= 1
■ If A is secret : SecretBit(A’) <=1, 

else SecretBit(A’) <=0
○ end if

● end if

Cache Replacement

Results
Overhead in % on RSA 512 execution

Parameters
Number of secrets 

(Cache = 1MB, Block = 64B)
0 1 2 3 4 5

Remaps 0 +0.8 +1.8 +3.98 +4.3 +4.7

Hits 0 +1.13 -0.88 -0.62 -2.7 -2.9

Misses 0 -0.7 +3.5 +4.2 +5.9 +6

Execution 
Time

+0.7 +0.79 +0.9 +1.16 +1.92 +2.1

Overhead in % on AES 128 execution

Parameters
Number of secrets 

(Cache = 1MB, Block = 64B)
0 1 2 3 4 5

Remaps 0 +0.6 +1.8 +3.98 +4.3 +4.7

Hits 0 +0.8 -0.88 -0.62 -2.7 -2.9

Misses 0 -1 +3.5 +4.2 +5.9 +6

Execution 
Time

+0.9 +1.2 +0.9 +1.16 +1.92 +2.1

Conclusion

Cache Lookup 

● Cache side channel attacks (CSCA) have become a
significant threat to shared cache security.

● Fortifying cache security by encrypting mappings to thwart
eviction-based attacks (e.g., Flush+Reload, Evict+Abort).

● Encryption of mappings induces performance overhead.
● Since the entire address space is involved, predictive

analysis can break the encryption.

● Approach: selective randomization that encrypts cache
mappings of only specific sections clashing with protected
memory regions.

● Instead of mapping the entire address range, we propose a
selective mapping technique performing encryptions only
when and where needed.

● Reduces the impact on performance overhead and the
possibility of breaking encryptions by predictive analyses.

● Only a marginal addition to the microarchitecture and cache
replacement policy.

● Very suitable for RISC-V architecture specifically.
● Hardware implementation of the proposed mitigation 

technique in the Comet1 RISC-V core.

● A minimal enhancement in the cache microarchitecture and
replacement policy to mitigate conflict-based CSCA.

● Measure performance overhead for 0 to 5 secret processes
being protected simultaneously.

● Two additional bits per 64B cache line used as metadata
for mapping and replacement (area overhead ~0.3%).

● Future works: synthesizing the proposed cache structure in
various RISC-V microarchitectures to gain deeper insights
into security and performance evaluations; studying the
evaluation of hardware-level encryptors in RISC-V cores.

Variation in number of Remaps, with increasing 
cache size

RISC V SUMMIT EUROPE 2024 (Munich, Germany)

1S. Rokicki, D. Pala, J. Paturel, O. Sentieys, What You Simulate Is What You Synthesize: Designing a Processor 
Core from C++ Specifications, IEEE/ACM ICCAD, 2019. https://gitlab.inria.fr/srokicki/Comet

https://gitlab.inria.fr/srokicki/Comet

