Selective Cache Re-Mapping to Mitigate **Cache Side Channel Attacks on RISC-V Processors**

Innía

Pavitra Prakash Bhade Indian Institute of Technology Goa India

Olivier Sentieys University of Rennes, INRIA France

Sharad Sinha Indian Institute of Technology Goa India

Cache Lookup

• *if Address A' present in cache then*

■ if RemapBit(A') == 1 then

• if Address A present in cache then

o if RemapBit(A) == 0 then

Cache Hit

• Encrypt A to A'

■ end if

• end if

• end if

• Cache Hit

• end if

• else

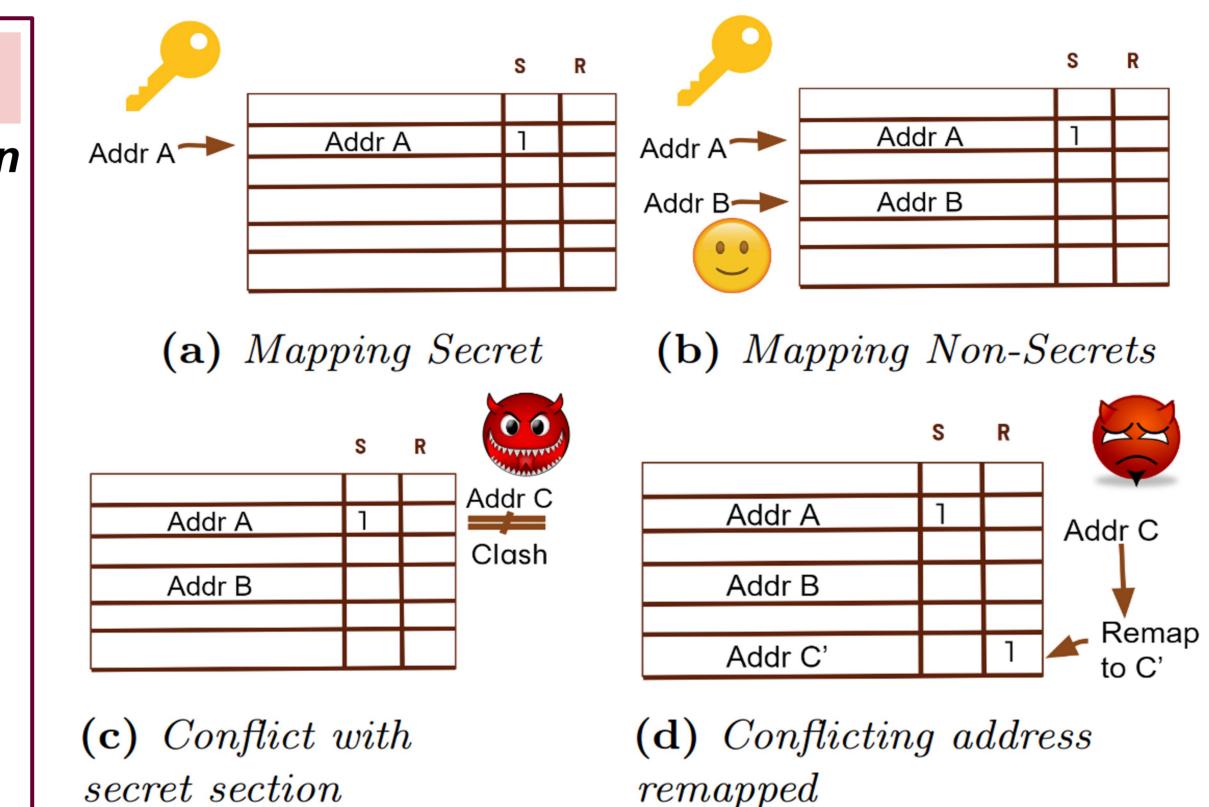
Introduction and Contributions

- Cache side channel attacks (CSCA) have become a significant threat to shared cache security.
- Fortifying cache security by encrypting mappings to thwart eviction-based attacks (e.g., Flush+Reload, Evict+Abort).
- Encryption of mappings induces performance overhead.
- Since the entire address space is involved, predictive analysis can break the encryption.
- Instead of mapping the entire address range, we propose a selective mapping technique performing encryptions only when and where needed.
- Reduces the impact on performance overhead and the possibility of breaking encryptions by predictive analyses.
- Only a marginal addition to the microarchitecture and cache replacement policy.
- Approach: selective randomization that encrypts cache mappings of only specific sections clashing with protected memory regions.
- Very suitable for RISC-V architecture specifically.
- Hardware implementation of the proposed mitigation technique in the *Comet*¹ RISC-V core.

5

+4.7

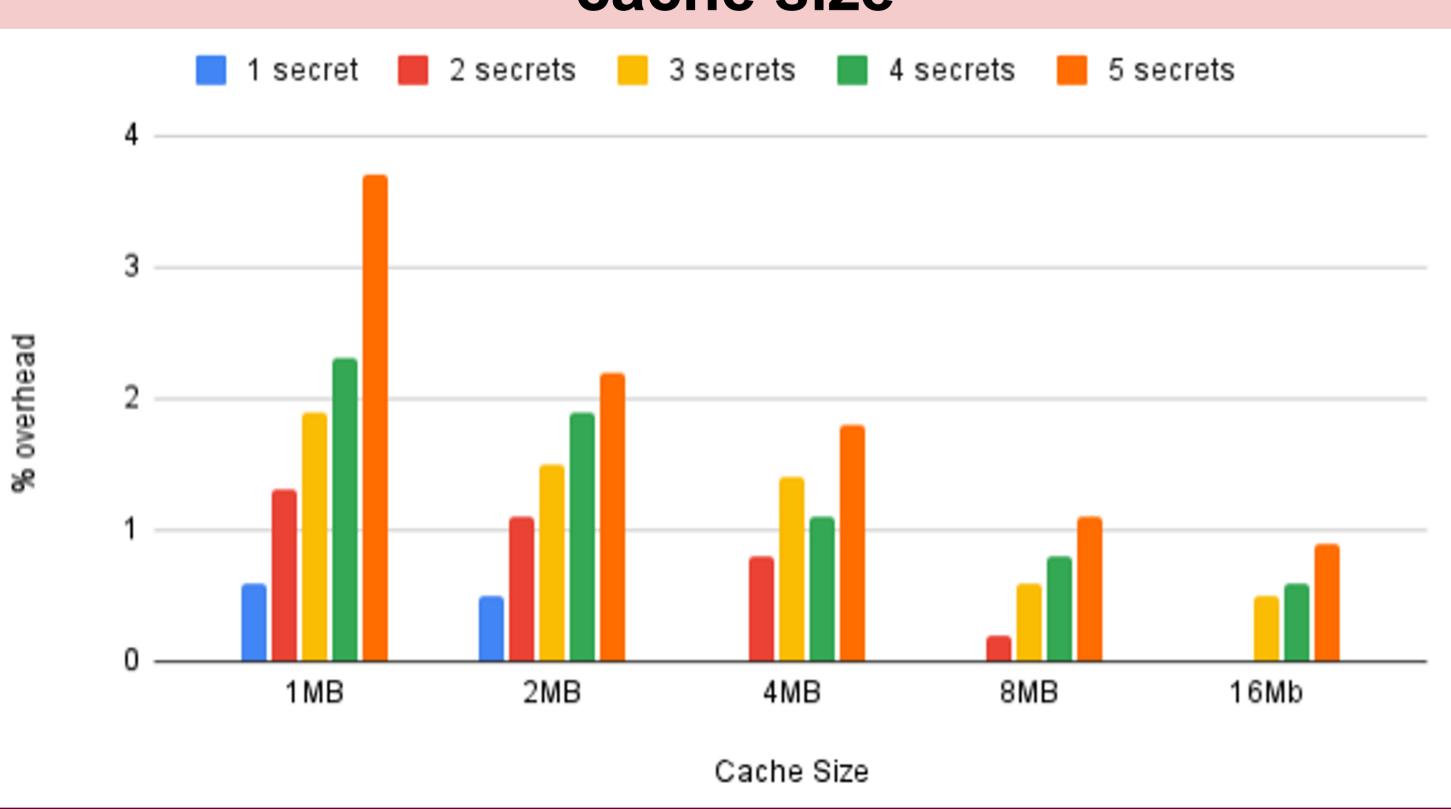
-2.9


+6

+2.1

Proposed Algorithms

Cache Replacement


- if Address A has to evict Address B then • *if* SecretBit(B) == 0 then
 - Replace B with A
 - if A is secret :SecretBit(A) <= 1
 - end if
 - o else
 - Encrypt Address A to A'
 - Search replacement location for A'
 - Replace at the found location
 - RemapBit(A') <= 1</p>
 - If A is secret : SecretBit(A') <=1, else SecretBit(A') <=0
 - end if

Results														
Overhead in % on RSA 512 execution								Overhead in % on AES 128 execution						
Parameters	Number of secrets arameters (Cache = 1MB, Block = 64B)							Parameters	Number of secrets (Cache = 1MB, Block = 64B)					
	0	1	2	3	4	5			0	1	2	3	4	
Remaps	0	+0.8	+1.8	+3.98	+4.3	+4.7		Remaps	0	+0.6	+1.8	+3.98	+4.3	
Hits	0	+1.13	-0.88	-0.62	-2.7	-2.9		Hits	0	+0.8	-0.88	-0.62	-2.7	
Misses	0	-0.7	+3.5	+4.2	+5.9	+6		Misses	0	-1	+3.5	+4.2	+5.9	
Execution Time	+0.7	+0.79	+0.9	+1.16	+1.92	+2.1		Execution Time	+0.9	+1.2	+0.9	+1.16	+1.92	

Variation in number of Remaps, with increasing cache size

Conclusion

- A minimal enhancement in the cache microarchitecture and replacement policy to mitigate conflict-based CSCA.
- Measure performance overhead for 0 to 5 secret processes being protected simultaneously.
- Two additional bits per 64B cache line used as metadata for mapping and replacement (area overhead ~0.3%).
- Future works: synthesizing the proposed cache structure in various RISC-V microarchitectures to gain deeper insights into security and performance evaluations; studying the evaluation of hardware-level encryptors in RISC-V cores.

¹S. Rokicki, D. Pala, J. Paturel, O. Sentieys, What You Simulate Is What You Synthesize: Designing a Processor Core from C++ Specifications, IEEE/ACM ICCAD, 2019. https://gitlab.inria.fr/srokicki/Comet

RISC V SUMMIT EUROPE 2024 (Munich, Germany)