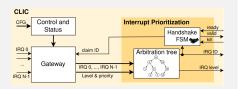


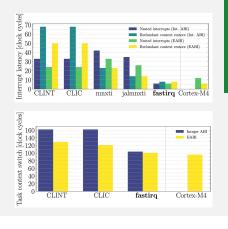
SentryCore: A RISC-V Co-Processor System for Safe, Real-Time Control Applications

Michael Rogenmoser¹, Alessandro Ottaviano¹, Thomas Benz¹, Robert Balas¹, Matteo Perotti¹, Angelo Garofalo^{1,2}, Luca Benini^{1,2}

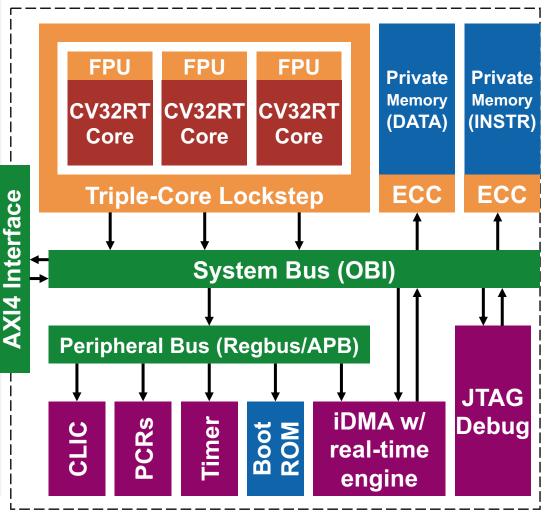

¹Integrated Systems Laboratory, ETH Zurich; ²Department of Electrical, Electronic, and Information Engineering, University of Bologna

Real-time

CLIC:


Core-Local Interrupt Controller

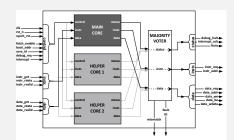
> Provides advanced interrupt handling


fastIRQ Extension

Provides low interrupt latency and fast context switch

Automotive SoCs are growing in complexity towards mixed-criticality systems (MCS) but still require reliable, real-time control.

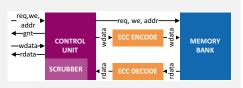
We present a dependable 32-bit RISC-V-based mega-IP for safety-critical, real-time MCS subsystems.

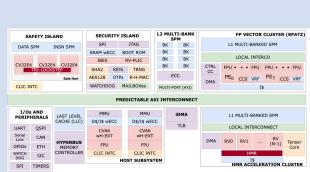


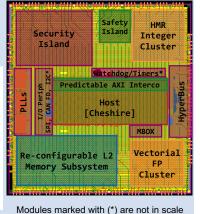
Reliability

TCLS:

Triple-Core Lockstep


Majority-voted cores with state recovery for reliable execution

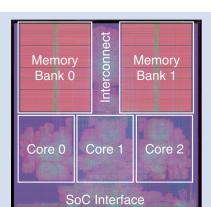

ECC-protected memory


Reliable data storage with Hsiao code single error correction, double error detection.

Efficient sub-word storage and scrubber to correct latent errors.

The Carfield Mixed-Criticality System

SentryCore Configuration


- CV32RT, FPU (32bit), CLIC
- TCLS, ECC Memory
- 64 bit AXI interface, no DMA
- 128 KiB ECC-protected Memory

Physically separated TCLS Cores

- 20 µm margins
- Avoids multi-bit error from a particle

Implementation Results

500 MHz **Clock Frequency** Try it out on pulp-platform github! 0.42 mm² Area

Dedicated support for multiple real-time Operating Systems

RTIC Real-Time Interrupt-driven Concurrency

