
A Methodology for Automating the Integration
of User-Defined Instructions into RISC-V Systems

based on the CV-X-IF Interface

Florian Egert, Sofia Maragkou, Markus Kobelrausch, Bernhard Fischer, Axel Jantsch
Contact: florian.egert@siemens.com

Electronics Design & Integrated Circuits, Siemens Technology
Institute of Computer Technology, Vienna University of Technology

Acknowledgements

The TRISTAN project, nr. 101095947 is supported by Chips Joint Undertaking (CHIPS-JU)

and its members and including top-up funding by the Austrian Research Promotion

Agency (FFG) and the program "ICT of the Future" of the Austrian Federal Ministry for

Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK).

TRISTAN

TRISTAN

Test

Application-specific Custom Instructions (CIs) facilitate efficient RISC-V-based
systems while preserving the versatility that standard instructions offer. The
integration of CIs in RISC-V processors is a manual, time-consuming process.

In this work, we present a way to semi-automate the CI development
process. The main feature of our approach is a configurable wrapper for CI
modules which is provided by the generation flow in RTL representation.

Our proposed flow is based on an interface-based integration approach.
External CI modules are integrated with the processor via an CI interface. This
approach allows to use and reuse the generated wrappers with multiple
different processors, without changing the processor's internals.

The interface implemented in our wrapper is the Core-V eXtension interface
(CV-X-IF) from the OpenHW Group. The recently ratified specification is still in
active development, and we envision upcoming support from multiple
processors and coprocessors.

One goal of utilizing CV-X-IF is to preserve the ability to immediately react to
an offloaded instruction. CV-X-IF and our wrapper allow the processor to
 collect the result of an instruction in
the same cycle in which it was issued.

RISC-V, Custom Instructions, Interfaces

Development time reduction:

• We estimated to which degree the presented flow supports the user in
reducing their working hours compared to implementing the CIs manually.

• The estimation is based on an expert interview.
• We created three scenarios with use cases of varying complexity.
• We also introduced weights based on the system's reusability and the

user’s experience level and training time.
• The estimation results yield a reduction in development time of about

64% when using the proposed flow.

Runtime improvements:

• We validated the flow by generating a
CRC and an AES coprocessor.

• For AES specifically, we compared the
instruction and cycle count against
two reference algorithms.

• The resulting reduction in runtime
ranged between around 61% to 88%.

Results - Runtime and Development Time

• We proposed a semi-automated CI integration flow that generates an RTL
wrapper. The support of the Core-V eXtension interface enables rapid
execution of issued CIs and compatibility with multiple RISC-V processors.

• We found runtime improvements for an AES use case of up to 88%.
• We attain a reduction in working hours of the flow’s users by around 64%.

The results demonstrate the potential benefits of a fully automated CI
development framework based on interfacing. In a follow-up action as part
of TRISTAN we are currently developing a High-Level Synthesis (HLS) flow to
add automation support for applications given in C/C++. HLS is leveraged to
generate RTL code from high-level C/C++ descriptions of the CIs and the
wrapper, and to further optimize for performance, power, and area.

Conclusion and Outlook

1. M. Damian et al. “SCAIE-V: an open-source SCAlable interface for ISA extensions for RISC-V processors”. Proc. DAC '22, pp. 169–174.
2. F. Egert. FRANCIS-V: FRAmework for iNtegrating Custom instructionS into RISC-V systems. Master’s thesis. 2023.
3. CORE-V eXtension Interface. OpenHW Group, 2021.

References

Inputs - what the user provides to the flow

• Custom Instructions in form of RTL modules
• Opcodes in .json format

Output - generated CI-specific wrapper

• Decoder: Handles instructions offloaded by the processor
• CI Module: User-provided CI execution unit
• Result Generation: Buffers results until the processor

collects or dismisses them

The current wrapper version supports R-type single-cycle CIs.
Therefore, CI modules provided by the user must consist of
combinational logic. To realize a multi-cycle CI, the
workaround is to split it into a sequence of multiple
combinational CIs.

CI Integration Flow

Processor

Coprocessor

CI
Module

CV-X-IF

	Folie 1

