
Accelerating AI on RISC-V
Optimizing BFloat16 for Improved Efficiency

1. Introduction
• Neural networks' are resilient/robust to numerical inaccuracies/noise.
• This has led to varied BFloat16 implementations with different degrees of

compliance to IEEE-754 as can be seen in the table below.
• It allows us to balance efficiency and precision for different applications.

Authors
Ruhma Rizwan

Hardware Engineer
10xEngineers

Lahore, Pakistan

Umer Imran
Sr. DV Engineer

10xEngineers
Lahore, Pakistan

Maah Noor
DV Engineer
10xEngineers

Lahore, Pakistan

Zeshan Rehman
DV Engineer
10xEngineers

Lahore, Pakistan

3. Methodology 4. Results/Findings
We have designed custom Bfloat16 instructions
for a simplified implementation of IEEE-Floating
point standard, suitable for low-precision
tolerant applications like Neural Networks and
integrated with the cv32e40p (RI5CY).

Area Savings
RTL synthesis at 65nm using Genus at 1GHz
frequency
• Subnormal flushing saves area by 21~22%
• Single Rounding mode saves area by 13~14%.
• Not propagating input Nans give marginal

reductions in area.
Overall reduction in area by ~35%
Polybench Benchmark
We evaluated the BF16 implementation using the
PolyBench suite to measure the mean relative
error of BF16 compared to FP32.

Neural Network Accuracies
Using a BF16 software model with RNE
rounding and subnormal flush-to-zero, we
ran ResNet and Inception on CIFAR-10.

2. Objective
An opensource design of a possible implementation for
a low-cost, modular, BFloat16 FPU micro-architecture
which targets RISC-V based embedded cores.

Feature RISC-V BF16
Vector Support

ARM’s MACC
Instructions

Intel’s Deep
Learning Boost

Google’s Cloud
TPUs

IEEE-defined
Rounding Modes

 (RO only) (RNE only)

Denormal Support (Flushing) (Flushing) (Flushing)
NaN Propagation
Exception Handling

The following steps outline our approach:
• Investigation of optimization techniques.
• Development of an optimized BF16 reference

model.
• Implementation of an optimized BF16 Floating

Point Unit (FPU).
• Addition of custom BF16 instructions to the

RI5CY core.
• Integration of the optimized BF16 FPU into the

RI5CY core.
• Experimental evaluation (area, power,

frequency, and accuracy measurements)

Configuration ResNet Accuracy Inception Accuracy
FP32(T) / BF16(I) 0.7496 0.7754
BF16(T) / BF16(I) 0.7376 0.7243
FP32(T) / FP32(I) 0.7495 0.7761

0

0.5

1

1.5

2

2.5

3

P
er

ce
n

ta
ge

 R
el

at
iv

e
Er

ro
r

Benchmark

5. Analysis 6. Conclusion
The paper proposes a power and area efficient BF16
implementation using single rounding mode, subnormal
flushing, and other optimizations. Analysis shows it preserves
accuracy in Polybench and NN models, enhancing embedded
NN applications without significant performance trade-offs.

Get instant access to our Optimized
BF16 code on GitHub – scan me!

Optimizations implemented in the Optimized Bfloat16 micro-architecture

Neil Burgess et al. “B��oat16 Processing for Neural Net-
works”. In: 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH). 2019, pp. 88–91. doi: 10 . 1109 /
ARITH.2019.00022.

Ganesh Venkatesh, Eriko Nurvitadhi, and Debbie Marr.
“Accelerating deep convolutional networks using low-
precision and sparsity”. In: 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2017, pp. 2861–2865.

Related literature

-

