
Accelerating AI on RISC-V
Optimizing BFloat16 for Improved Efficiency

1. Introduction
• Neural networks' are resilient/robust to numerical inaccuracies/noise.
• This has led to varied BFloat16 implementations with different degrees of 

compliance to IEEE-754 as can be seen in the table below.
• It allows us to balance efficiency and precision for different applications.
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3. Methodology 4. Results/Findings
We have designed custom Bfloat16 instructions 
for a simplified implementation of IEEE-Floating 
point standard, suitable for low-precision 
tolerant applications like Neural Networks and 
integrated with the cv32e40p (RI5CY).

Area Savings
RTL synthesis at 65nm using Genus at 1GHz 
frequency
• Subnormal flushing saves area by 21~22%
• Single Rounding mode saves area by 13~14%.
• Not propagating input Nans give marginal 

reductions in area.
Overall reduction in area by ~35%
Polybench Benchmark
We evaluated the BF16 implementation using the 
PolyBench suite to measure the mean relative 
error of BF16 compared to FP32.

Neural Network Accuracies
Using a BF16 software model with RNE 
rounding and subnormal flush-to-zero, we 
ran ResNet and Inception on CIFAR-10.

2. Objective
An opensource design of a possible implementation for 
a low-cost, modular, BFloat16 FPU micro-architecture 
which targets RISC-V based embedded cores.

Feature RISC-V BF16 
Vector Support 

ARM’s MACC 
Instructions 

Intel’s Deep 
Learning Boost 

Google’s Cloud 
TPUs 

IEEE-defined 
Rounding Modes 

  (RO only)   (RNE only) 

Denormal Support   (Flushing)  (Flushing)  (Flushing)  
NaN Propagation      
Exception Handling     

The following steps outline our approach:
• Investigation of optimization techniques.
• Development of an optimized BF16 reference 

model.
• Implementation of an optimized BF16 Floating 

Point Unit (FPU).
• Addition of custom BF16 instructions to the 

RI5CY core.
• Integration of the optimized BF16 FPU into the 

RI5CY core.
• Experimental evaluation (area, power, 

frequency, and accuracy measurements)

Configuration ResNet Accuracy Inception Accuracy
FP32(T) / BF16(I) 0.7496 0.7754
BF16(T) / BF16(I) 0.7376 0.7243
FP32(T) / FP32(I) 0.7495 0.7761
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5. Analysis 6. Conclusion
The paper proposes a power and area efficient BF16 
implementation using single rounding mode, subnormal 
flushing, and other optimizations. Analysis shows it preserves 
accuracy in Polybench and NN models, enhancing embedded 
NN applications without significant performance trade-offs.

Get instant access to our Optimized 
BF16 code on GitHub – scan me!

Optimizations implemented in the Optimized Bfloat16 micro-architecture
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