
Hard Real-Time is Easy!
Pawel Dzialo12 Per Lindgren12

1 Tampere University, Tampere, Finland
2 Luleå University of Technology, Luleå, Sweden

Abstract
Ensuring the correctness and schedulability of real-time
applications is key to implementing safe and robust real-time
systems. However, formal verification implies additional effort and
the need for specialized competence.
In this work we leverage on the Symex symbolic execution engine,
and port the Symex General Assembly Language to support the
RV32I instruction set to obtain cycle-accurate WCET estimates for
the Hippomenes architecture.
We outline how this information can be utilized to determine
specific task response time and overall schedulability of hard
real-time systems expressed in the Stack-Resource Policy(SRP)
based Rust RTIC framework.
Hard real-time using worst case Execution time estimAtion by
SYmbolic execution is EASY!

1 Background
For hard real-time systems, any unmet execution deadlines are
unacceptable. Guaranteeing that performance requirements are
met is a problem with many moving parts:

threaded models with unbounded critical sections
hardware wait states
cache performance
general difficulty of formally verifying code

In this work we attempt to solve these problems by simplification:
The Stack Resource Policy[1] model-based RTIC framework[4]
provides an outset for trivial schedulability analysis given
worst-case execution time(WCET) of each task and critical
section.
The Hippomenes architecture bounds the WCET of any
instruction to one cycle.
The Symex[2][3] symbolic execution engine combined with
Hippomenes provides cycle-accurate bounds to WCET for RTIC
tasks/critical sections automatically.

Since Symex works directly on the compiled binary, the WCET
analysis is toolchain agnostic, and does not assume toolchain
correctness.

2 Methodology
Using the simple function displayed in Figure 1 as an outset, Symex
performs a depth-first search over all of the possible execution
paths, determining their path conditions. The results of this search
are displayed in Figure 2

fn simple(t: u32) -> u32 {
if t == 1 {

return 2;
} else if t == 2 {

return 4;
} else if t == 3 {

panic!()
} else {

if t == 1 {
return 13

}
return 42;

}
return 13;

}

Figure 1: The simple function under analysis

2

Start

4 panic

!(t==1||t==2||t==3) &&
!(t!=1||t!=2||t!=3)

t==2
t==1

t==3 t!=1 &&
t!=2 &&
t!=3

13

42 13

t!=1 &&
t!=2 &&

t!=3

t!=2 &&
t!=3 &&
t!=1 &&
t==1

Figure 2: Symex search tree according to Figure 1. Generated path conditions are
shown on edges. Unfeasible path conditions are highlighted in red.

The obtained execution time of each path is compared against
actual execution time on Hippomenes, confirming the
cycle-accurate WCET bounds.

Path ID Return Value Symex estimate (cycles) Actual execution time (cycles)
1 2 4 4
2 4 6 6
3 panic 8 8
4 42 8 8

Figure 3: Comparison of Symex analysis against actual runtime of the code in
Figure 1. Notice that paths leading to return 13; are proven unfeasible thus
not taken into account. Although Symex provides execution time estimates for
all feasible paths, for WCET, only the worst case (in this case Path ID 3 and 4) are
of interest.

3 RTIC-based analysis

Shared A/B
Resource(s)

Interrupt 2/Task B

Input
Event A

Input
Event B

Task B Local
Resource(s)

Interrupt 1/Task A

Task B Local
Resource(s) Interrupt 3/Task C

Task C Local
Resource(s)

Output
Event C

Shared B/C
Resource(s)

Figure 4: Based on the SRP Task/Resource model, the Rust RTIC framework
generates a correct by construction binary with guaranteed memory safety and
race-/dead-lock free execution.

The SRP Task/Resource model is amenable to static scheduling
analysis. We obtain hard real-time guarantees by taking the Easy
approach to determine WCETs for tasks and critical sections.

References
T. P. Baker. “A stack-based resource allocation policy for

realtime processes”. In: [1990] Proceedings 11th Real-Time
Systems Symposium (1990), pp. 191–200.
J. Norlén. “Architecture for a Symbolic Execution Environment”.

MA thesis. Luleå University of Technology, Computer Science,
2022.
E. Serrander and J. Norlén. Symex.
https://github.com/s7rul/symex. 2024.
R. Team. The RTIC Book.
https://github.com/rtic-rs/. 2024.

,DelftUniversity of
Technology

	Abstract
	Background
	Methodology
	RTIC-based analysis
	References

