
Vectorization Example

Robin Dapp
<rdapp@ventanamicro.com>

High-level Vector Improvements
● Wired up all suitable auto vectorization primitives for integer/floating point; loads/stores,

gathers, binary operations etc.
Loop and SLP vectorization work, GCC’s vector testsuite passes.

● Vectorized memcpy, strlen, strcmp etc.
● Vector calling convention.
● Vector crypto intrinsics, XTheadVector (RVV 0.7) integrated.
● OOO instruction scheduling model.

● Many improvements to the vsetvl pass, fully based on GCC’s LCM implementation now.
● Dynamic LMUL selection based on register-pressure estimation.

● Pre- and post-commit CIs.

GCC 14 RISC-V Vectorization Improvements
and Future Work

Lessons Learned
● GCC uses auto generated “instruction description” files. RVV requires huge number of

instruction modes (due to LMUL) as well as operands and iterators.
● Caused generated files to blow up (almost 10x larger than next largest backend),

bottleneck for compiler bootstrap time.
● Needed to adjust generators to split their output, also helps other backends.

● Vector mask implementation differs from other architectures, bit-”packing” was a source
of many bugs.

● Uncovered some long-standing vectorizer bugs due to disabling of vector cost model for
testing (thus vectorizing more).

foo (int *x, int *y, int *z,
 int *pred, int n)
 {
 for (int i = 0; i < n; ++i)
 x[i] = pred[i] != 1

 ? y[i] + z[i]
 : y[i];

 }

Compiled with

gcc -march=rv64gcv -O3

.L132:
vsetvli a5,a4,e32,m1,ta,mu
slli a6,a5,2
vle32.v v0,0(a3)
vle32.v v1,0(a1)
vmsne.vi v0,v0,1
vle32.v v2,0(a2),v0.t
vadd.vv v1,v2,v1,v0.t
vse32.v v1,0(a0)
add a3,a3,a6
add a1,a1,a6
add a2,a2,a6
add a0,a0,a6
sub a4,a4,a5
bne a4,zero,.L132

Performance Improvements SPEC 2017 (qemu)

Rel. Performance vs. LLVM and GCC aarch64

Geomean: 21.15% reduction in #instructions

Performance and TODOs
Takeaway: RVV reduces #instructions by ~20% across SPEC2017. In line with what we
expected and see on other architectures.
Slightly better relative improvement than GCC aarch64 and LLVM RVV.

TODOs for GCC 15 and beyond:
● Strided load/store support, helps 525.x264_r and 519.lbm_r. Known pain point in the

vectorizer. Somewhat uarch dependent but LLVM does better here.
● Currently revisiting some known-bad vectorizer costing decisions, working on enhanced

strided-load support.
● For 525.x264_r need to improve SLP discovery and scheduling, handle stores with gaps in

vectorizer.
● GCC 15 transition to SLP-only representation of the vectorizer (long-standing issue) will help

with codegen and also require adjustments.
● Vector cost model is very generic, barely uarch-specific tuning in place. Expecting this to

improve a lot once more uarchs are available for public testing.

Saturating Arithmetic (GCC 15)
● coremark-pro’s zip-test (basically zlib) key loop uses saturating sub:

unsigned n, m;
do {

m = *--p;
*p = (Posf)(m >= wsize ? m - wsize : NIL);

} while (--n);

● LLVM has been supporting this for a while, GCC 15 will as well,
roughly 10% improvement:
vrgather.vv
vnclipu.wi
vssubu.vv
vrgather.vv

Early-Break Vectorization (GCC 15)
● The following is now vectorized upstream:

#define N 803
unsigned vect_a[N], vect_b[N];

for (int i = 0; i < N; i++)
 {
 vect_b[i] = x + i;
 if (vect_a[i] > x)
 break;
 vect_a[i] = x;
 }

Fault-First Loads (GCC 15?)
● Right now we recognize idioms and manually implemented them “optimally”

(e.g. vectorized 2-byte rawmemchr in 523.xalancbmk_r).
● Similarly, 2-byte strcmp possible, proof of concept in place.

Lots of similar spots, e.g. find in 523.xalancbmk_r.
● LLVM went a similar route for hot loop in 557.xz_r:

while (++len != len_limit)
if (pb[len] != cur[len])

 break;

● All those can be vectorized with early-break vectorization but must not read beyond array
bounds.

● Requires fault-only-first load support, being worked on.

More to Come (GCC 15?)
● Combination of

vmv.v.x v8, a4 and
vop.v.v v2, v3, v8 into
vop.v.x v2, v3, a4.

Need register-pressure aware propagation of a4 as well as uarch-specific adjustments.
Originally wanted to implement in forward propagation pass but new late-combine pass
is a better fit.

● Aggressive fast-math reassociation (benefits scalar but also vector):

1.5 * (a + b + 2) + 1.5 * a ->
3.0 * a + b + 3.0 = FMA (3.0, a, 3.0) + b

● Vector Crypto Extension for auto vectorization: vwsll, vandn, etc.

● min/max reduction, if-conversion for chained conditions.
● Better widening/narrowing support in GIMPLE, general idea is to synthesize
● Overlap handling for register groups.
● Scalar evolution for vsetvl.

● Not yet:
while (*arr)

arr++;
return arr;

● Nor:
while (*lhs == *rhs) {

lhs++;
if (lhs == lhs + lhsLen)

return true;
rhs++;

}
return false;

