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Introduction
• Modern embedded systems rely on complex System on Chips (SoCs)

• Virtual Prototypes (VPs) are used in SoC development to handle complexity
• VPs enable early and parallelized Hardware (HW) / Software (SW)

development and verification
• Verification methods for Central Processing Units (CPUs) with VPs available
• Verification of SoC peripherals is comparably neglected

Problem: Peripherals are different than CPUs

Solution: VP-based verification methods of hardware peripherals

State of the Art
• Existing approaches are similar to constrained random methods, recent HW

verification utilizes fuzzing
• Often faster than methods that rely on Register-Transfer Level (RTL)

simulation
• Full system interaction (including interrupts) is usually not considered
• Current VP-based methods mostly look into CPU verification

Challenge: Prior work lacks full system consideration

Approach: VP makes full system interaction available

Verification Methodology
• Utilize available Transaction Level Modeling (TLM) based peripherals
• Employ state-of-the-art fuzzer for powerful Coverage-Guided Fuzzing (CFG)
• Benefit from VP-based full platform simulation
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Coverage-Guided Fuzzing approach

Co-simulation-based approach

Detailed overview of our verification methodology for hardware peripherals

Two approaches acting in synergy
A CFG on the Unit-Level
B Application-driven Co-Simulation on the System-Level

1 Specifications that describe behavior
2 TLM implementation inside VP, Golden Reference
3 RTL Peripheral, the Design under Verification (DUV)
4 Translation of RTL from HDL to C++ with transactor
5 Execution of Fuzzing testbench in differential setup
6 Automatic detection of mismatches allows refining and retesting
7 Utilize VP to execute applications on system with golden model and RTL DUV
8 Detection of mismatch allows refinement

Evaluation
• Evaluate RISC-V Platform Level Interrupt Controller (PLIC) as peripheral

with broad functionality:
• Handle bus transactions
• Timing-specific behavior (e.g., maximum delay to inform the CPU about interrupt)
• Various I/O and internal configuration registers

• Utilize open-source RISC-V VP for platform simulation
• Enable CFG through LLVM libFuzzer

Coverage Guided Fuzzing
• Executed CFG for 1 hour
• Generated 39 445 input sequences in total
• Detected and fixed three bugs
• Achieve high coverage through fuzzing

Coverage Metric
TLM PLIC RTL PLIC

Hit Available Coverage Hit Available Coverage

Line coverage 119 121 98.3% 3212 3721 86.3%
Function coverage 13 13 100% 20 24 83.3%
Branch coverage 72 118 61.0% 1056 1432 73.7%

Obtained coverage metrics after 1 h of Coverage-Guided Fuzzing

Application-driven Co-Simulation
• Compare functionality of peripherals across full system VP simulations
• Use FreeRTOS-based applications, actively utilizing the peripheral
• Identify performance cost of co-simulating RTL and TLM inside VP
• Trace and compare timestamps for various RTL clock speeds
• Identify non-functional mismatches quickly
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Effect of RTL clock period of DUV on 1) VP performance (left), 2) simulation accuracy(right)

Timestamp / µs
Actor Event

TLM RTL (10 ns) RTL (100 000 ns)

74 74 80 Task 1 Context switch on CPU 0 to Task 1
165 165 175 WFR Context switch on CPU 0 to WFR
165 165 175 WFR xSemaphoreGiveFromISR(0x800545DC)
165 165 175 WFR Actor Ready: Task 2
165 165 177 Task 2 Context switch on CPU 0 to Task 2
165 165 177 Task 2 xSemaphoreTake(0x800545DC, 100)
167 167 179 Task 2 xSemaphoreTake(0x800545DC, 100) blocks
167 167 - Task 1 Context switch on CPU 0 to Task 1
173 173 179 Task 1 Actor Ready: TzCtrl
173 173 180 Task 1 Context switch on CPU 0 to Task 1
265 265 275 WFR Context switch on CPU 0 to WFR

Excerpt of FreeRTOS trace highlighting non-functional mismatch for different clock periods

Future Work
• Compare different state-of-the-art fuzzers (e.g., libFuzzer, AFL/AFL++) to

highlight differences in input generation and coverage
• Fill coverage gap through additional software-based verification methods (e.g.

symbolic execution)
• Explore more peripherals to study scalability and efficiency
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