
Cross-Level Verification of Hardware Peripherals
Sallar Ahmadi-Pour1, Muhammed Hassan1,2, Rolf Drechsler1,2

1 Institute of Computer Science, Universität Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, Germany
{sallar, hassan, drechsler}@uni-bremen.de

Introduction
• Modern embedded systems rely on complex System on Chips (SoCs)

• Virtual Prototypes (VPs) are used in SoC development to handle complexity
• VPs enable early and parallelized Hardware (HW) / Software (SW)

development and verification
• Verification methods for Central Processing Units (CPUs) with VPs available
• Verification of SoC peripherals is comparably neglected

Problem: Peripherals are different than CPUs

Solution: VP-based verification methods of hardware peripherals

State of the Art
• Existing approaches are similar to constrained random methods, recent HW

verification utilizes fuzzing
• Often faster than methods that rely on Register-Transfer Level (RTL)

simulation
• Full system interaction (including interrupts) is usually not considered
• Current VP-based methods mostly look into CPU verification

Challenge: Prior work lacks full system consideration

Approach: VP makes full system interaction available

Verification Methodology
• Utilize available Transaction Level Modeling (TLM) based peripherals
• Employ state-of-the-art fuzzer for powerful Coverage-Guided Fuzzing (CFG)
• Benefit from VP-based full platform simulation

Coverage
Report

Fuzzing Testbench

Co-Simulation

VP

RTL Peripheral
Under

Development

Fuzzer
(e.g. libFuzzer)

Verified RTL
Peripheral

VP

ISS

TLM Bus

DMATimer Sensor

Software Application

Specifications

refinement,
fix of mismatch

Mismatch
found

Manual
Inspection

Automatic
Detection

No mismatch

A

B

TLM Bus

DMATimer Sensor

SystemC RTL
Peripheral

ISS
TLM

Peripheral
Prototype

TLM/RTL
Transactor

SystemC RTL
Peripheral

TLM/RTL
Transactor

TLM
Peripheral
Prototype

Mismatch
found

No mismatch

Verilator
+

Transactor

1

2

3 4

6

5

7

8

Coverage-Guided Fuzzing approach

Co-simulation-based approach

Detailed overview of our verification methodology for hardware peripherals

Two approaches acting in synergy
A CFG on the Unit-Level
B Application-driven Co-Simulation on the System-Level

1 Specifications that describe behavior
2 TLM implementation inside VP, Golden Reference
3 RTL Peripheral, the Design under Verification (DUV)
4 Translation of RTL from HDL to C++ with transactor
5 Execution of Fuzzing testbench in differential setup
6 Automatic detection of mismatches allows refining and retesting
7 Utilize VP to execute applications on system with golden model and RTL DUV
8 Detection of mismatch allows refinement

Evaluation
• Evaluate RISC-V Platform Level Interrupt Controller (PLIC) as peripheral

with broad functionality:
• Handle bus transactions
• Timing-specific behavior (e.g., maximum delay to inform the CPU about interrupt)
• Various I/O and internal configuration registers

• Utilize open-source RISC-V VP for platform simulation
• Enable CFG through LLVM libFuzzer

Coverage Guided Fuzzing
• Executed CFG for 1 hour
• Generated 39 445 input sequences in total
• Detected and fixed three bugs
• Achieve high coverage through fuzzing

Coverage Metric
TLM PLIC RTL PLIC

Hit Available Coverage Hit Available Coverage

Line coverage 119 121 98.3% 3212 3721 86.3%
Function coverage 13 13 100% 20 24 83.3%
Branch coverage 72 118 61.0% 1056 1432 73.7%

Obtained coverage metrics after 1 h of Coverage-Guided Fuzzing

Application-driven Co-Simulation
• Compare functionality of peripherals across full system VP simulations
• Use FreeRTOS-based applications, actively utilizing the peripheral
• Identify performance cost of co-simulating RTL and TLM inside VP
• Trace and compare timestamps for various RTL clock speeds
• Identify non-functional mismatches quickly

0 2000 4000 6000 8000 10000
RTL clock period in ns

1000

2000

3000

4000

R
u
n
ti

m
e
 i
n
 m

s

RTL-PLIC - Runtime

TLM-PLIC - Runtime

0 200 400 600 800 1000 1200 1400
300

400

500

600

700

800

900

1000

1100

1200

0 2000 4000 6000 8000 10000
RTL clock period in ns

7.650

7.652

7.654

7.656

7.658

7.660

Si
m

ul
at

io
nt

im
e

in
 n

s

1e7
RTL-PLIC - Simulationtime
RTL-PLIC - Simulationtime (Moving Average)
TLM-PLIC - Simulationtime

Effect of RTL clock period of DUV on 1) VP performance (left), 2) simulation accuracy(right)

Timestamp / µs
Actor Event

TLM RTL (10 ns) RTL (100 000 ns)

74 74 80 Task 1 Context switch on CPU 0 to Task 1
165 165 175 WFR Context switch on CPU 0 to WFR
165 165 175 WFR xSemaphoreGiveFromISR(0x800545DC)
165 165 175 WFR Actor Ready: Task 2
165 165 177 Task 2 Context switch on CPU 0 to Task 2
165 165 177 Task 2 xSemaphoreTake(0x800545DC, 100)
167 167 179 Task 2 xSemaphoreTake(0x800545DC, 100) blocks
167 167 - Task 1 Context switch on CPU 0 to Task 1
173 173 179 Task 1 Actor Ready: TzCtrl
173 173 180 Task 1 Context switch on CPU 0 to Task 1
265 265 275 WFR Context switch on CPU 0 to WFR

Excerpt of FreeRTOS trace highlighting non-functional mismatch for different clock periods

Future Work
• Compare different state-of-the-art fuzzers (e.g., libFuzzer, AFL/AFL++) to

highlight differences in input generation and coverage
• Fill coverage gap through additional software-based verification methods (e.g.

symbolic execution)
• Explore more peripherals to study scalability and efficiency

Funded by:

Grant number 16ME0127 and 01IW22002

Find more about our RISC-V related work at agra.informatik.uni-bremen.de/projects/risc-v/ or scan the QR code

related research by

AGRA

agra.informatik.uni-bremen.de/projects/risc-v/

