Into the Memory-Verse:

A Multicolored Approach for C/C++
Memory Safety in RISC-V

~ Fraunhofer

AISEC

Konrad Hohentanner, Lukas Auer, Lukas Hertel

Motivation
. Programs written in C/C++ often suffer from memory errors char usernamell6] = "alice";
char password[16] = "secret";
- An efficient solution to prevent this is memory tagging
. . char *source = "NewUsernameThatWillOverflow";
« Current designs such as ARM MTE have some blind spots strcpy(username, source);
- We Propose some modifications tOimprOVG memory tagging strcpy will copy the full string without any bounds

checks, overwriting the password variable

How Memory Tagging helps protect your data

"alice"; // tag a
"secret"; // tag f

__ char username[1l6]
char password[16]

- Aper-objecttagis inserted in unused pointer bits and tag memory N pata fae
char* username ﬁ alice”
« On loads and stores tags are compared efficiently in hardware a |00000012345678 X | 2 Cet" ::H
. \ secre
« This prevents memory errors such as overflows and use-after-frees tag address teeeee

The tag values prevent the strcpy overflow

Just one smallissue...

__ struct user_t {

char username[1l6]; // tag a
- The per-object tags are set for a whole struct/class y char passwordl1el; —// tag a
b/
- Inside structs they cannot differentiate .
char *source = "LongUsernameThatWillOverflow";
- That means intra-object overflows are not detected strcpy (user->username, source);

Even with memory tagging, this will overflow, as
username and password share the same tag

Therefore, we propose Memory Shading
Data Tag

__ color shade

struct user_t { oT [Towaa s 1
char username[16]; L alice" m>la |1
: , char password[16]; ~| |"secret">al?2
- Per-object tag and per-field shade } ol \
-8 llbobll 1
»Allows detection of intra-object overflows S| [npizza" 2 |

 Flexible extension of existing memory tagging

- Gemb5 Prototype in development as part of BCDC Tags are split into color and shade.
Colors prevent normal overflows, while shades

prevent intra-object overflows

RISC-V Summit EU
Munich 2024

	Beispiel
	Slide 1

