PerfXLM: A LLM Inference Engine on RISC-V CPUs

Xinan Yu¹, Chiyo Wang¹, Haochen Zhang¹, Xiandong Liu¹ and Xianyi Zhang^{1*}

¹PerfXLab Technologies, *Corresponding author: xianyi@perfxlab.com

Features & Performance

- Support model inference on both the cloud and device.
- Support for multiple heterogeneous platforms like GPU and CPU.
- **High performance operators** were customized and optimized according to the characteristics of large model

Low Precision Quantization

We use AWQ(Activation-aware Weight Quantization) method, only quantizing the weights. For the FP16 model, we quantizes it into INT4 to reduce the memory footprint, which now is a quarter of the original. The adopted parameter group_size is 128, the scale parameter and zero parameter only require an additional storage of about 1% of weight matrix size.

•

We use INT4 Quantization method of AWQ and develop an APP for Llama. Finally, the generation speed is **4.01 token/s** and memory footprint of the model is **3.7GB**.

User:What's your name? PerfxChat: My name is PerfxChat. User:How old are you? PerfxChat: I'm 10 years old. User:What is HPC? PerfxChat: HPC stands for High Performance Comput ing. User:Give me more information about it. PerfxChat: HPC is a field of computer science tha t focuses on developing and using computers to so lve problems that are too complex for a normal co mputer to handle. User:What is OpenBlas? PerfxChat: OpenBlas is a library that provides a set of functions for performing linear algebra op erations on matrices. User:Give me more information about OpenBlas? PerfxChat: OpenBlas is a library that provides a set of functions for performing linear algebra op erations on matrices. It is a free software libra ry that is licensed under the GNU Lesser General Public License. User:Give me some suggestion about how to optimiz e code in GPU. PerfxChat: I'm not sure what you mean by "optimiz e code in GPU".

Core Operator Tuning

The main bottlenecks in large model inference are the **GEMM** operator and **GEMV** operator. PerfXLM optimizes for both. The main optimization strategies are as follows:

- Perform data chunking to improve data reuse.
- Vectorized memory access.
- Unroll the core loop manually.

- Only need to deal with 1% of the significant weights to achieve good accuracy.
- The hardware efficiency is low when the outliers are taken out directly.
- Quantization and inverse quantization by preserving scale parameter can maintain accuracy and speed up.

Parallelize multiple dimensions to improve parallelism.

Operator Fusion

The operator fusion operation performed by PerfXLM is mainly reflected in three parts:

- PerfXLM fuses the addition operation and normalization operation of the residual network.
- PerfXLM fuses the three matrix multiplication operations to generate matrix Q, matrix K, and matrix V into one, and use the matrix multiplication operation of larger dimension.
- PerfXLM combines all the operations in self attention into one operator.

