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e Spectre [/] mitigation through selective speculation fences if (condition) {
on RISC-V cores y = tab|[ *secret_address];
| }
e Hybrid hardware/software mitigation enables fine grained : :
control over speculative execution. Speculation gadgets Acquisition gadget Disclosure gadget
* The solution is implemented on NaxRiscV[1] out-of-order The if statement will trigger  Thevalue stored at secret Accessing the tab array using
core in combination with LLVM[2] compiler. the speculative execution of address is going to be the speculative data will leave
e Explore the usage policies and semantics of a barrier the rest of the code, itisthe |  speculatively loaded intoa a measurable trace in
TS speculation gadget. register. architectural level.

Existing mitigations

Software-based Hardware-based

e Locking speculative execution: Retpoline mitigation [5] adds an infinite loop | ¢ Insulating the speculative state: Duplicating all microarchitectural registers

in the speculative path. (Prevent Spectre-BTB attacks) and rolling them back in case of mispeculation.

e Reducing the attack window: LFENCE/JMP Mitigation [3] inserts a * Detecting and preventing data leakage: SpecTerminator[4] detects the
presence of a leak and denies information disclosure.
These approaches provide a fixed implementation and do not permit the application of any

|
|
|
I policy other than the predefined one. The reproducibility of the hardware-based approach
| has also become a limitation.

serialization barrier in front of the spectre gadget.
e Preventing the illegal access : SLH mitigation [6] poisons loads with
condition predicates. (Prevent Spectre-PHT attacks)

Fence.spec rd, rs1/Fence.ser rd, rs1 mitigation semantics

Full Fence

e Rs1 depends on all previous registers in program
order.

e Any new instruction consuming rd depends on
fence.

e Fence depends on rs1.
AR (ORI RD (OB o All following registers in program order dependent
on fence.

Fence all

e Rs1 depends on all previous registers in program
order.

e All subsequent instructions in the program order
depend on fence.

Fence.ser |

e Fence.ser introduces new data dependencies.

e Fence depends onrsl.
 Any new instruction consuming rd depends on RD = XO, RS1 = X0
fence.

- Fence.spec

e Fence.spec is unable to complete its execution while in speculative mode.

e Ensures that the rd register is not used by other instructions in * Fence.ser can complete its execution in speculative mode.

speculative mode. e Somehow similar to LFENCE.
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Conclusion

e Working on LLVM enables exploration of
various protection policies with a fence
instruction.

e The different fence.spec/ser options provide a
comprehensive evaluation of the
performance/security costs associated with
different types of barrier instructions.
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Preliminary results

Adjusted unique internal gadget count geometric mean comparison with respect to "none-v5" Trace Duration Geometric Mean Ratio Comparison with respect to "none-v5"
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o Load_after (light blue bin) ensures that any target register provided by load instructions cannot be



