’ SELECTIVE SPECULATION:
&Z’Zéa/- EXPLORING INSTRUCTION BARRIERS FOR
TRANSIENT EXECUTION MITIGATION

>\'/'< Université Herinomena ANDRIANATREHINA
7\ de Rennes Supervisors: Ronan LASHERMES, Simon ROKICKI, Joseph PATUREL
“
e Spectre [/] mitigation through selective speculation fences if (condition) {
on RISC-V cores y = tab|[*secret_address];
| }
e Hybrid hardware/software mitigation enables fine grained : :
control over speculative execution. Speculation gadgets Acquisition gadget Disclosure gadget
* The solution is implemented on NaxRiscV[1] out-of-order The if statement will trigger Thevalue stored at secret Accessing the tab array using
core in combination with LLVM[2] compiler. the speculative execution of address is going to be the speculative data will leave
e Explore the usage policies and semantics of a barrier the rest of the code, itisthe | speculatively loaded intoa a measurable trace in
TS speculation gadget. register. architectural level.

Existing mitigations

Software-based Hardware-based

e Locking speculative execution: Retpoline mitigation [5] adds an infinite loop | ¢ Insulating the speculative state: Duplicating all microarchitectural registers

in the speculative path. (Prevent Spectre-BTB attacks) and rolling them back in case of mispeculation.

e Reducing the attack window: LFENCE/JMP Mitigation [3] inserts a * Detecting and preventing data leakage: SpecTerminator[4] detects the
presence of a leak and denies information disclosure.
These approaches provide a fixed implementation and do not permit the application of any

|
|
|
I policy other than the predefined one. The reproducibility of the hardware-based approach
| has also become a limitation.

serialization barrier in front of the spectre gadget.
e Preventing the illegal access : SLH mitigation [6] poisons loads with
condition predicates. (Prevent Spectre-PHT attacks)

Fence.spec rd, rs1/Fence.ser rd, rs1 mitigation semantics

Full Fence

e Rs1 depends on all previous registers in program
order.

e Any new instruction consuming rd depends on
fence.

e Fence depends on rs1.
AR (ORI RD (OB o All following registers in program order dependent
on fence.

Fence all

e Rs1 depends on all previous registers in program
order.

e All subsequent instructions in the program order
depend on fence.

Fence.ser |

e Fence.ser introduces new data dependencies.

e Fence depends onrsl.
 Any new instruction consuming rd depends on RD = XO, RS1 = X0
fence.

- Fence.spec

e Fence.spec is unable to complete its execution while in speculative mode.

e Ensures that the rd register is not used by other instructions in * Fence.ser can complete its execution in speculative mode.

speculative mode. e Somehow similar to LFENCE.

——_—_—_—_—

|
J

Conclusion

e Working on LLVM enables exploration of
various protection policies with a fence
instruction.

e The different fence.spec/ser options provide a
comprehensive evaluation of the
performance/security costs associated with
different types of barrier instructions.

,._
[

\

(

Preliminary results

Adjusted unique internal gadget count geometric mean comparison with respect to "none-v5" Trace Duration Geometric Mean Ratio Comparison with respect to "none-v5"
10 = R = === e S S S SmS e sessessssssesmeay

e
o

o
o
-
)

=
o
-
n

o
'S

Geometric Mean Ratio
=
o

Geometric Mean Ratio

e
N
e
0]

B R | References
¢ @bg b?éo a.vé ¢.°°°
& [1] NaxRiscv.
https://github.com/SpinalHDL/NaxRiscv.Accessed:
. [2] Chris Lattner and Vikram Adve. “"LLVM: A
e Two different implementations (V5 and V9) of fence.spec are included in NaxRiscV. Compilation Framework for Lifelong Program
: : Analysis and Transformation”.
 The bar labeled 'none-V5'is used as the baseline. 13] A|yyssa Milburn et al. You Cannot Always Win

the Race:Analyzing the LFENCE/JMP Mitigation for

Observation: B
Branch Target Injection.

e The two figures illustrate the trade-off between performance and security, showing that as we gain [4] Hai et al. Jin. “SpecTerminator: Blocking
, , Speculative Side Channels Based on Instruction
more in security, we lose performance. Classes on RISC-V”. In: ACM Trans. Archit. Code
: oy : Optim. (2023)
e.g: load_before_V5 (red bin) is the most secure but the most expensive also. [5] Abdul Kadir et al. “Retpoline Technique for
o With Fence.spec: Mitigating Spectre Attack”. In: ICEEE 2019. 2019,
pp. 96-101.
o Load_before (orange bin) policy prevents unauthorized access during speculative execution. [6] Zhiyuan Zhang et al. “Ultimate SLH: Taking

Speculative Load Hardening to the Next Level.
[7] Paul et al. Kocher. “Spectre Attacks: Exploiting

used speculatively. This policy prevents information leaks, but does not cover unauthorized access. Speculative Execution”.

This work was supported by a grant from the French State, managed by the National Research Agency under the France 2030 Plan, reference

o Load_after (light blue bin) ensures that any target register provided by load instructions cannot be

