
Spectre [7] mitigation through selective speculation fences

on RISC-V cores.

Hybrid hardware/software mitigation enables fine grained

control over speculative execution.

The solution is implemented on NaxRiscV[1] out-of-order

core in combination with LLVM[2] compiler.

Explore the usage policies and semantics of a barrier

instruction.

Abstract

Fence.spec rd, rs1/Fence.ser rd, rs1 mitigation semantics

Preliminary results

Context

Fence

Herinomena ANDRIANATREHINA
Supervisors: Ronan LASHERMES, Simon ROKICKI, Joseph PATUREL P E P R - A r s e n e

 i f (condition) {
 y = tab[*secret_address];
 }

Speculation gadgets Acquisition gadget Disclosure gadget

The if statement will trigger

the speculative execution of

the rest of the code, it is the

speculation gadget.

The value stored at secret

address is going to be

speculatively loaded into a

register.

Accessing the tab array using

the speculative data will leave

a measurable trace in

architectural level.

Fence.spec Fence.ser

RD ≠ X0, RS1 = X0

Full Wait

RD = X0, RS1 ≠ X0

Full Fence

RD ≠ X0, RS1 ≠ X0

Minimal fence

RD = X0, RS1 = X0

Fence all

Existing mitigations

Working on LLVM enables exploration of
various protection policies with a fence
instruction.
The different fence.spec/ser options provide a
comprehensive evaluation of the
performance/security costs associated with
different types of barrier instructions.

Conclusion

[1] NaxRiscv .
https://g i thub.com/SpinalHDL/NaxRiscv.Accessed:
2024-02-29.
[2] Chr is Lattner and Vikram Adve. “LLVM: A
Compilation Framework for Lifelong Program
Analysis and Transformation ” .
[3] A lyssa Mi lburn et a l . You Cannot Always Win
the Race:Analyzing the LFENCE/JMP Mitigation for
Branch Target Injection .
[4] Hai et a l . J in . “SpecTerminator: Blocking
Speculative Side Channels Based on Instruction
Classes on RISC-V ” . In : ACM Trans. Archit . Code
Optim. (2023)
[5] Abdul Kadir et a l . “Retpoline Technique for
Mitigating Spectre Attack ” . In : ICEEE 2019. 2019,
pp. 96–101.
[6] Zhiyuan Zhang et a l . “Ultimate SLH: Taking
Speculative Load Hardening to the Next Level .
[7] Paul et a l . Kocher. “Spectre Attacks: Exploit ing
Speculative Execution ” .

References

Software-based Hardware-based

SELECTIVE SPECULATION:
EXPLORING INSTRUCTION BARRIERS FOR

TRANSIENT EXECUTION MITIGATION

Rs1 depends on all previous registers in program
order.
Any new instruction consuming rd depends on
fence.

Fence depends on rs1.
All following registers in program order dependent
on fence.

Fence depends on rs1.
Any new instruction consuming rd depends on
fence.

Rs1 depends on all previous registers in program
order.
All subsequent instructions in the program order
depend on fence.

Fence.spec is unable to complete its execution while in speculative mode.
Ensures that the rd register is not used by other instructions in
speculative mode.

Fence.ser introduces new data dependencies.
Fence.ser can complete its execution in speculative mode.
Somehow similar to LFENCE.

Locking speculative execution: Retpoline mitigation [5] adds an infinite loop
in the speculative path. (Prevent Spectre-BTB attacks)
Reducing the attack window: LFENCE/JMP Mitigation [3] inserts a
serialization barrier in front of the spectre gadget.
Preventing the illegal access : SLH mitigation [6] poisons loads with
condition predicates. (Prevent Spectre-PHT attacks)

Insulating the speculative state: Duplicating all microarchitectural registers
and rolling them back in case of mispeculation.
Detecting and preventing data leakage: SpecTerminator[4] detects the
presence of a leak and denies information disclosure.

This work was supported by a grant from the French State, managed by the National Research Agency under the France 2030 Plan, reference

Note:
Two different implementations (V5 and V9) of fence.spec are included in NaxRiscV.

The bar labeled 'none-V5' is used as the baseline.

Observation:
The two figures illustrate the trade-off between performance and security, showing that as we gain

more in security, we lose performance.

 e.g: load_before_V5 (red bin) is the most secure but the most expensive also.

With Fence.spec:
Load_before (orange bin) policy prevents unauthorized access during speculative execution.

Load_after (light blue bin) ensures that any target register provided by load instructions cannot be

used speculatively. This policy prevents information leaks, but does not cover unauthorized access.

These approaches provide a fixed implementation and do not permit the application of any
policy other than the predefined one. The reproducibility of the hardware-based approach
has also become a limitation.

