Formal Verification of Security-Properties on RISC-V Processors

Czea Sie Chuah, Christian Appold, and Tim Leinmüller

Motivation

- High security demands of upcoming applications, e.g. autonomous driving
- In past years several famous bugs and security-vulnerabilities in processors found
- Design flaws can be exploited by attackers

- RISC-V security verification guidance needed
- Our work increases RISC-V security by:
 - 1. Comprehensive identification of security-critical functionality
 - 2. Derivation of properties for security-critical functionality correctness
 - 3. Formal verification of the properties

Collaboration with TUM Chair of Security in Information Technology

Methodology

- Akaria NS31A commercial RISC-V processor verified
 - 32-bit, 4 pipeline stages, 3 privilege modes
- Verification using Cadence Jasper Formal Verification Platform

Work presents comprehensive set of securityproperties for RISC-V security hardening

Security-Properties

• Identified security-critical functionality:

Instruction Execution	CSRs	Debug Operation	
Check instruction flow through pipeline	Comply with CSR access rules	Comply with Debug CSR access rules	
Exception and Interrupt	Mode Transition	PMP	
Proper handling required	Mode transition rules need to be met	Access control rules for memory regions need to be met	
Control Flow	Register Update	Memory Access	
Correct setting of program counter	Correct target register is updated	Value and address of memory transfers as intended	

Example mode transition SVA properties:

Results

- Used Jasper settings:
 - Jasper contains formal verification engines for full-proofs and bug-hunting
 - engines use different model checking techniques, e.g. BDD or SAT-based
 - verified all properties of a category in parallel
 - use of several Jasper engines in parallel
 - automatic choosing of most suitable engine
- We identified 1146 properties and grouped them under 9 categories
- Achieved full-proof for passing properties
- Runtime: Control Flow < 24h, others < 4000s

	Properties			
Categories	Assertion	Pass	Fail	
Instruction Execution	10	10	0	
CSR	394	280	114	
Debug Operation	14	14	0	
Exception and Interrupt	87	87	o 3 bugs	
Mode Transition	13	13	o found	
PMP	574	574	0	
Control Flow	9	8	1	
Register Update	33	33	0	
Memory Access	12	12	0	
Total	1146	1031	115	

SVA: System Verilog Assertions, CSR: Control and Status Register, PMP: Physical Memory Protection

