Acceleration for RISC-V Processors 中国科学院大学

Ziging Zhang^{1,2}, Shuoxiang Xu^{3*}, Yuhan Diao^{4*}, David Boland⁵, Yungang Bao^{1,2} and Kan Shi^{1,2}

- ¹ State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences
- ² University of Chinese Academy of Sciences
- ³ ShanghaiTech University ⁴ Imperial College London ⁵ The University of Sydney

Background

Perform Our solution: ENCORE FPGA prototyping Verification triangle paradox: · FPGA Prototyping: high performance and low cost \$~10k Software Simulato · Emulators: debug capability and high performance Simulators: low cost and debug capability Debug Capability

Figure 1: A comparison among existing verification methods and ENCORE

Chip verification is important and difficult:

- It takes up to 70% of the entire chip design cycle
- Even advanced verification methodologies is limited by the verification triangle paradox.

ENCORE Framework

ENCORE is a verification framework:

- Targeting processor verification
- With FPGA-accelerated verification + fine-grained debugging capabilities ENCORE performs automatic checking on a single FPGA SoC:
- · Implements RTL design and its SW model on the same FPGA
- · Perform checking on the fly, taking hardware snapshots and offloading to software simulators to debug

ENCORE is fast

- ... and capable of fine-grained debugging
- ... and with low cost

ENCORE Debugging workflow

Once a potential issue is found by self-checking, The following procedure will be taken to reproduce the suspicious context.

- Pauses the entire hardware and the software
- Takes a snapshot of the entire FPGA fabric(FFs, RAM, etc.) •
- Transfers all the values from the FPGA to a host PC
- Reconstructs the simulation from the paused state in an external simulator such as ModelSim.

Evaluation Result

Performance: compare with SW simulation only

- · SW simulation: using Modelsim or Verilato
- ENCORE is much faster than Verilator: 84x ~ 139x
- ENCORE is much faster than Modelsim: 19264x ~ 44187x

and simulation-only approach.

上海科技大学

Imperial College

London

Figure 2: The ENCORE Framework where PL and PS represent the programming logic and processing system on the FPGA, respectively.

The key functions of ENCORE are to perform

automatic self-checking during operation

The Structure of ENCORE

snapshot the design once a potential issue is identified.

Hardware architecture.

- encore_infra: the hardware infrastructure.
- encore_checker: the module responsible for test data collection and automatic self-checking.
- snapshot and interrupt controller: create snapshots of the current design and initiate interruptions.

Software architecture.

- the software ISA emulator: serve as the "golden reference model" to ensure instruction-level accuracy against DUT
- customized driver: fetch the key signals state, and write this essential information to the software buffer for comparison

Experiment Setup

Experiment platform:

- FPGA Board: Fidus Sidewinder board
- With AMD ZYNQ UltraScale+ XCZU19EG FPGA and two 16GB DDR4 memories.
- Host Server: with two AMD Ryzen 5950x 16-core processors

Experiment Configuration:

- System Clock Frequency: 150MHz.
- DUT: NutShell.
- an open-source 64-bit RISC-V processor core capable of booting Linux.
- ISA emulator: NEMU

Resource Usage: compare with conventional debugging approach

- ILA-based: Integrated Logic Analyzer
- Conventional: Recompile needed when adding new signals
- ENCORE: No recompilation needed, snapshot can view all signals
- Two configurations: PC+1 CSR (config1), PC + 32 CSRs (config2)

Table1: Resource Usages of ENCORE and the Example Design

Resource	ENCORE	ENCORE	ILA	ILA	DUT
	(config1)	(config2)	(config1)	(config2)	(Nutshell)
LUTs	563	1597	885	6112	41589
	(0.11%)	(0.31%)	(0.17%)	(1.17%)	(7.96%)
Block RAMs	12	12	24	465	281
	(1.22%)	(1.22%)	(2.44%)	(47.26%)	(28.6%)
Registers	1429	1493	1615	11194	57609
	(0.14%)	(0.14%)	(0.15%)	(1.07%)	(5.51%)