Efficient Verification Framework for RISC-V
Instruction Extensions with FPGA Acceleration

Yang Zhong'2, Zijian Jiang®*, Keran Zheng*, Shuoxiang Xu®, Yungang Bao'2 and Kan Shi'-2 INES% 2%

1 State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences

2

University of Chinese Academy of Sciences

3 Beijing University of Technology ¢ Imperial College London ® ShanghaiTech University

FRMIEALRLELE

INSTITUTE OF COMPUTING TECHNOLOGY ,CHINESE ACADEMY OF SCIENCES

@ TaurRRE

University of Chinese Academy of Sciences

a2 0% Ao

ShanghaiTech University

Imperial College
London

Vision & Value

Figure 1: RISC-V core with extended HLS accelerator

HLS-based
RV Core Accelerator

: Vitis™ HLS
RISC-\V/° d

« Basic RISC-V ISA contains common

instructions, while the extended
accelerators meet diverse needs.

» High-level synthesis (HLS) provides a

way to build hardware accelerators

further improving development efficiency.

[original design & testbench module

[l Automatic generated dynamic reconfigurable module

(@Software co-simulation

Data sequence

C Testbench CPU

SW Sim 1

[0V < Mem inst.

offline
check,

S d

@FPGA Pr with ILA
FPGA debugger
= Mem inst
puv
—_— LA ——>
@Our approach
C Testbench
I Binary file Binary file
1 | FPGA
HW Design PL d’”:"';r”" SW Model Ps
checl
Hi
Sub-sys ESTRES g MR Emuiated
o ISA custom RoCC crucoe
Ell extension Rl RISCV error
accelerator e
+~ I Design Snapshot Em

Figure 2: Comparison between the conventional

verification approaches and the proposed approach

The overall architecture

ically fi latfo I
[statically fixed system platform module Automatic Frontend
_________________________________ 4

) . Y HW/SW co-simulation
C Simulation testbench [Py testbench

HLS-generated Dynamic partial
custom reconfigurable fabric
accelerator RTL bitstream

ﬂpafse & generate \3 ﬂ FPGA place & route

connect
Corresponding RoCC
RoCC
of R#zapper | — S DUV

Rocket Tile

Design snapshot

Construct Sim State

ZYNQ|Ultrascale+ FPGA

Emulated
CPU core

Host CPU Software Backend

Software simulator

Figure 3: The overall architecture of RISC-V instruction extensions verification framework. Including
automatic frontend, FPGA architecture and Host CPU Software Backend

Software Frontend

An automated scheme to:

Integrate HLS-generated accelerators
DUV into RoCC.

Transformation a C simulation testbench
into a co-simulation test program.

Interface

crhd

2100 1900y

P s

)

Figure 4: Architecture of the RoCC Wrapper

Software Emulation

The software reference model is placed

on an ISA emulator running on the

hardened processing system as a

concrete implementation of the extended

instructions.

RoCC Wrapper

» Using the RoCC interface and protocol
to link the RISC-V cores with

accelerators.

+ Automatically
register bank,
FSM.

generate the decoder,
cache bus convertor and

» Dynamically reconfigured to reduce

deployment time when changing DUV.

Traditional methods to verify HLS-

generated designs:

C/C++ simulation.

» Lacks accurate latency information.

» May not catch issues related to hardware
implementation details.

C/RTL co-simulation.

* Runs much slower than C/C++ simulation.

» May operate even more slowly when
debugging features are enabled.

Our solution:

» Map both the RISC-V cores and HLS-
generated hardware onto the FPGA,
and corresponding software models on
the hardened processor.

* Propose a set of verification-focus custom
instructions for better system-level validation.

Evaluation

Platform: Fidus Sidewinder board

+ with a Xilinx Zynq UltraScale+ XCZU19EG
FPGA and two 16GB DDR4 memories.

Host Server: connected to the server via JTAG.

» two AMD Ryzen 5950x 16-core processors

» Back-end simulator: ModelSim SE2019.4

3500 35
I Ours
[LA (config1)
3000 ILA(config2) 30
I (LA (config3)
2500 25
»
; 2000 202
g 3
= 1500 15 @
1000 10
500 5

LuT FF BRAM

Figure 5: Comparison of area overhead between ILA and
proposed approach. The area overhead data are averaged by
nine designs in MachSuite. Config 1, 2, and 3 correspond to a
sampling depth of 1024, 2048 and 4096, respectively

"
o «®

Pe o o
e S o

o - °
o @S o
U o

— Ours none) I— P all)

Figure 6: Comparison of running performance between
our approach and software simulation.

