

Full-stack evaluation of Machine Learning inference workloads for RISC-V systems

Debjyoti Bhattacharjee, Anmol Anmol, Tommaso Marinelli, Karan Pathak, Peter Kourzanov imec, Kapeldreef 75, 3001 Leuven, Belgium. {first}.{last}@imec.be

INTRODUCTION

With the increased demand for machinelearning (ML) and deep-learning (DL) powered applications, it is important to evaluate their impact on existing and future architectures. Architectural simulators like gem5 provide a convenient way to run workloads on a modeled system, providing performance data that are close to reality. The goals of this work are multiple:

- · We aim to assess the **performance** of machine learning inference workloads on RISC-V architectures using the gem5 simulator.
- The ML/DL workloads are lowered through IREE (Intermediate Representation Execution Environment), an open-source framework to compile the models and distribute their execution across the available hardware resources.
- We leverage an open-source compilation toolchain based on Multi-Level Intermediate Representation (MLIR).

EXPERIMENTAL SETUP

Attribute	Type/version	
ISA	rv64gc	
Core Type	MinorCPU, O3CPU	
Core Freq.	2 GHz	
L1 Cache	64KB, 4-way	
L2 Cache	8MB, 4-way	
DRAM Type	simpleMem	
DRAM Size	3GB	
DRAM Freq.	1 GHz	
Kernel	Linux v6.6.20	
Bootloader	OpenSBI v1.4	
IREE Version	20230209.43	
gem5 version	v23.1 develop	

Tab 1: Architecture and Toolchain configuration

Task	Benchmark	Size (MB)
Segmentation	Deeplab V3	2.70
Segmentation	Densenet	41.15
TextDetection	East	23.03
Vision	Efficientnet lite0	4.39
LargeLanguageModel	GPTTwo	472.82
Stylization	Imagestylization	9.00
Classification	Inception V4	162.77
CreativeAl	Imagenet	2.88
DepthEstimation	Midas	63.26
DigitRecognition	MNIST(Lenet5)	1.15
Classification	Mobilenet V1	4.24
Classification	Mobilenet V2	13.30
PoseEstimation	Posnet	12.88
Classification	Resnet (50)	23.52
Classification	Resnet 50	98.53
Classification	Squeezenet	1.66
ObjectDetection	SSD Mobilenet V1	6.65

Tab 2: Benchmarks used for evaluation

· We have set up a workflow to evaluate the

· The benchmarks have been tested on a

ML/DL workloads lowered through IREE.

Most instructions are memory accesses

with less instructions (less data reuse)

specialized tools (gem5 and SST).

performance (and other execution metrics) of

simulated RISC-V platform under Linux, using

The out-of-order model is significantly faster

Benchmarks with a high L2 MPKI are the ones

The key points of the work are:

The results show that:

than the in-order (5.22x)

- The IREE flow is used to convert ML/DL models from typical formats (like ONNX or TensorFlow) to framework-independent intermediate representations (IR).
- IREE also generates execution/synchronization logic to distribute and control the tasks on specific hardware platforms.
- The applications are packed inside an image and singularly executed under a minimal operating system, immediately after boot.
- The platform is simulated using a composite environment, consisting of gem5 for the core and caches, and SST (Structural Simulation Toolkit) for the main memory.

Some specific details about this work:

- The reference CPU is a **RISC-V RV64GC** single core processor, in two flavours (in-order or out-of-order).
- The OS is Linux and the C standard library is GLIBC.
- A heterogeneous set of models has been selected.
 - **EXPERIMENTAL RESULTS**
- · Fused multiply accumulate operations and memory operations dominate neural network inference

stat name lass = FloatSgrt + Total Instructio

Fig 1: Instruction mix for each ML workload

The reuse of weights in neural networks helps in reducing cache misses at L2

Fig 3: Miss Per Kilo Instruction (MPKI) observed at I 2 cache

Large models benefit the most from using an OoO CPU compared to in-order baselines

Fig 2: Performance of the workloads running on in-order CPU (Minor CPU) and speedup on running upon O3 CPU

Gem5, being a single threaded simulator takes a long time to simulate the workloads

Fig 4: Time (in hours) for simulation of workload on a x86 host.

CONCLUSION AND FUTURE WORK

Some potential directions for future work include:

- · Analysis of additional benchmark suites (e.g.
- MLPerf) Transition from Linux to more lightweight operating systems (e.g. Zephyr), which are
- better suited for embedded platforms Validation of simulation data against commercial RISC-V implementations or FPGA softcores
- Evaluation of the impact of the RISC-V vector extension (RVV 1.0)
- Simulation of more complex scenarios (e.g. multi-core with multiple or parallel workloads)

REFERENCES

[1] F. Bellard, "QEMU, a fast and portable dynamic translator.," in USENIX annual technical conference, FREENIX Track, vol. 41, pp. 10–5555, California, USA, 2005. [2] "Spike RISC-V ISA Simulator," https://github.com/riscv-

- software-src/riscv-isa-sim. Accessed: 2024-03-12. [3] J. L. Power and et al., "The gem5 simulator: Version
- 20.0+," CoRR, vol. abs/2007.03152, 2020. [4] C. Lattner and et al., "MLIR: Scaling compiler
- infrastructure for domain specific computation," in 2021 (CGO), pp. 2–14, IEEE. 2021.
- [5] C. Lattner and V. Adve, "LLVM: A compilation framework for lifelong program analysis & transformation," in CGO 2004., pp. 75-86, IEEE, 2004.

[6] H.-I. C. Liu, M. Brehler, M. Ravishankar, N. Vasilache, B. Vanik, and S. Laurenzo, "TinvIREE: An ML execution environment for embedded systems from compilation to deployment," IEEE Micro, vol. 42, no. 5, pp. 9-16, 2022.

BENCHMARKING FLOW

