
Let’s make a
standard for CHERI-
RISC-V

To make memory safety available for everyone,
from small cores to high performance

Tariq Kurd, Chief Architect at Codasip

RISC-V Summit Munich, June 2024

2© 2024 Codasip. All rights reserved.

From CHERI v8 to CHERI-RISC-V

• CHERI v8 imported into CHERI v9 repo in April 2022

• CHERI v9 changes
• CHERI-MIPS removed
• CHERI-RISC-V now the base architecture
• CHERI-x86 sketch added

• And of course ARMv8 – Morello – also exists

• CHERI-RISC-V changes in CHERI v9
• Merged register-file only, split option removed

• This was legacy from MIPs

• Removal of DDC, PCC offsetting
• Add CGetHigh, CSetHigh for capability creation and querying
• Add per-privilege enables into menvfg, senvcfg CSRs
• Moving to tag clearing to reduce exception sources
• This is not a complete list…

3© 2024 Codasip. All rights reserved.

From CHERI-RISC-V v9 to the Codasip Demo

At Codasip we worked independently to fill in gaps in the specification to allow a product

to be built

1. There was no CHERI-RISC-V debug specification (Sdtrig/Sdext)

2. Not all mnemonics were clearly specified

1. E.g. did c.j map to c.cj in capability mode? The semantics don’t change….

2. Missing encodings for 16-bit instructions….

3. Merging the exception priorities with the standard RISC-V ones

4. And various other changes

→ We demonstrated the result of this development at the RISC-V Summit in Santa Clara,

November 2023

4© 2024 Codasip. All rights reserved.

The Demo at the RISC-V Summit Santa Clara Nov ‘23

Carl Shaw and Troy Jones

showing the A730-CHERI

prototype detecting a buffer

overrun on the stack before the

stack canary spotted it

5© 2024 Codasip. All rights reserved.

Getting to the RISC-V Github repo

• Started working with Cambridge University on the CHERI-RISC-V specification

after a discussion at the RISC-V Summit in Barcelona in June 2023

• We were already working in the background on a different version of the

CHERI specification document

• Extracting well defined features from CHERI v9

• Postponing experimental and less well-defined features

• Defining a stable base architecture

• Written as an implementation spec

• Covers all the necessary questions asked by the implementation and verification

teams to allow the product to be built

• We tested this spec on our A730-CHERI core development

6© 2024 Codasip. All rights reserved.

CHERI-RISC-V v0.7.0

https://github.com/riscv/riscv-cheri/releases/January 2024

After review with Cambridge Uni, the Codasip CHERI spec
document became v0.7.0 on Github:
https://github.com/riscv/riscv-cheri/releases/

The Task Group was formed

Then the real specification work started refining the architecture

https://github.com/riscv/riscv-cheri/releases/

7© 2024 Codasip. All rights reserved.

RV32: Old Capability Format

• CHERI v9 has

• 12-bit permissions

• 8-bit mantissa (encoded as 8 for Base, 6 for Top) – 14-bits

• 1-bit flag (Mode)

• 4-bit Otype

• 1-bit Internal Exponent flag

The RV32 format poses challenges due to limited encoding space

• That’s a lot of permission bits

• Otype has been deferred

• The mantissa is too short for accurate bounds

• Mode doesn’t need a whole bit, it’s only relevant for executable capabities

• We want space for future expansion

• No software defined permissions

A few observations

So, let’s rework the format

8© 2024 Codasip. All rights reserved.

RV32: New Format

The final encoding has

• 2 software defined permissions

• 5 architectural permissions (6 including the Mode bit)

• With space for more to be added

• 4 reserved bits (for local/global?)

• 1 sealed bit

• T8 gives an extra mantissa bit when the exp is zero, or a 5-bit exp field

9© 2024 Codasip. All rights reserved.

Invalid address handling: the problem

Invalid addresses
may change when
written to registers
such as MEPC for

Sv39 or Sv48

Is the new address in
bounds or not? Do we
need to check? It’s not

cheap to do so.

10© 2024 Codasip. All rights reserved.

Illegal address handling: the solution

• For running CHERI software only

• Take an invalid address CHERI exception, so we don’t care if the address is representable or in
bounds or not

• Legacy RISC-V code on a CHERI core still takes an access fault

A new CHERI exception type

• Previously CHERI required full 64-bit address comparators

• Now we need 39-bit for Sv39, 48-bit for Sv48

• This gives a nice power and area saving, and is simpler

• This also compatible with pointer masking as we don’t need to compare the masked range of
the address

Reduces the size of the bounds comparators

11© 2024 Codasip. All rights reserved.

Other changes?

There are
many other

changes since
CHERI v9

Trying to
make the

adoption of
CHERI-RISC-V

easier

Remove SCR
space, and
map them

into the CSR
space

Removed
Duplicate
Mnemonics

• JALR/CJALR,
LC/CLC etc.

Minimising
the ISA

Easy Mode
Switching

• Avoids supporting lots
of load/ stores which
execute in the other
mode, as on Morello

12© 2024 Codasip. All rights reserved.

What extensions do we have?
Extension Status Description

ZcheriPurecap Stable – bug fixes only Base architecture for a CHERI purecap machine

ZcheriLegacy Stable – bug fixes only Implies ZcheriPureCap. Adds legacy RISC-V support

Zabhlrsc Stable – bug fixes only Byte/half LR/SC support (independent of CHERI)

Zstid Software prototyping Secure thread ID for Compartmentalisation

ZcheriHypervisor Prototype, need PR CHERI and Hypervisor support

ZcheriVector Prototype, need PR CHERI and Vector optimised support to allow Vector capability memcpy

ZcheriPTE Prototype, PR needs update Optimised Revocation support by supporting capability accessed and dirty in
page tables

ZcheriTransitive Prototype, PR needs update Support for reducing capability permissions on loading

ZcheriMultiLevel Research, need PR Support for locally/globally accessible capabilities with multiple levels

ZcheriTraceTag Research, Need PR Support for data capability trace with tags

ZcheriSanitary Research, Need PR Support for cleaning capabilities on compartment switching

ZcheriSystem Research, Need PR Support for exposing compartment IDs to the system (a better WorldGuard)

13© 2024 Codasip. All rights reserved.

Getting to RVA23 Compatibility

We’re currently have RVA22+CHERI fully working for mandatory extensions. We want to get to RVA23+CHERI, which has

some gaps to fill:

• Vector+CHERI: Fairly simple – check every unmasked byte of every load/store against the bounds

• But the devil is in the details for complex sequenced masked load/stores

• Indexed loads where the base is zero and the entire address is in the element are a problem: the capability will need to

have the address field set to zero, and so the bounds must start at zero

• Consider adding VLC/VSC to load/store full vector registers including caps, and an associated VCMV to move a whole vector

register to support Vector capability memcpy

• Vector+Hypervisor: more on the next talk

• Pointer masking: seems easy – needs confirmation

14© 2024 Codasip. All rights reserved.

Code Size Reduction

→Already in the CHERI-RISC-V spec

• JVT becomes a capability

Zcmt – table jump

• The data-width doubles, and only RV32 is of interest, so
effectively use the RV64 stack layout for RV32-CHERI-RISC-V

Zcmp – push/pop

15© 2024 Codasip. All rights reserved.

Conclusions

CHERI is 100% compatible with RVA22 mandatory extensions

Will soon be with RVA23 too

We’re working on CHERIoT compatibility

We want one ratified specification to cover all variants

CHERI runs existing RISC-V code with 100% compatibility

This makes adoption of CHERI much easier

16© 2024 Codasip. All rights reserved.

The future….

All new Codasip cores will have CHERI

CHERI world domination – all cores memory safe..?

17© 2024 Codasip. All rights reserved.

That’s all folks
• Collaborate with us: https://github.com/riscv/riscv-cheri

• Join the TG and the bi-weekly meeting

• Tell us what’s missing and help fill in the gaps

• Help drive CHERI to world domination

https://github.com/riscv/riscv-cheri

	Slide 1: Let’s make a standard for CHERI-RISC-V
	Slide 2: From CHERI v8 to CHERI-RISC-V
	Slide 3: From CHERI-RISC-V v9 to the Codasip Demo
	Slide 4: The Demo at the RISC-V Summit Santa Clara Nov ‘23
	Slide 5: Getting to the RISC-V Github repo
	Slide 6: CHERI-RISC-V v0.7.0
	Slide 7: RV32: Old Capability Format
	Slide 8: RV32: New Format
	Slide 9: Invalid address handling: the problem
	Slide 10: Illegal address handling: the solution
	Slide 11: Other changes?
	Slide 12: What extensions do we have?
	Slide 13: Getting to RVA23 Compatibility
	Slide 14: Code Size Reduction
	Slide 15: Conclusions
	Slide 16: The future….
	Slide 17: That’s all folks

