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Introduction

HW manufacturers development flow targets product that are:

• Efficient in term of time to market

• Flexible for easy upgrade

• Low cost with a silicon area as small as possible

• Low power via optimal choice and usage of processing 

resources

We choose and customized Apache TVM as HW/SW co-design 

framework enabling to generate and test the software 

regardless of the HW availability.

TVM overview

TVM enables to import, optimize, compile, and run a high-level 

defined Deep Learning network model; it is mainly composed of:

• A Deep Learning model Relay importer

• A graph optimizer in Relay language (Abstract Syntax Tree)

• An operator internal scheduler in TE language

• An operator low-level optimizer in TIR language

RISCV customized instruction integration into TVM

After relay graph partitioning, the TE schedule of the offloaded 

operators to custom RISCV compute lib is created.

TVM customization

Processing simulation model

Creation of C++ components to simulate the HWA and the 

RISC-V extended instructions. Compiled and run in the context 

of TVM or outside TVM in standalone environments.

Hybrid methodology for int8 Quantization

We are using QNN operators for the Relay backend part by 

adding Relay passes that transform standard float32 NN Relay 

graph into a quantized version. QNN relay expressions are 

inserted, and operators are replaced with their quantized 

variants.

BYOC concept extended

With Bring Your Own Codegen, custom HW components 

programming is left to proprietary toolchain and TVM 

optimization of the related code stops at Relay level.

We modified BYOC to handle offloaded operations as a TVM 

TE and TIR language representation enabling TVM to be used 

for schedule definition and optimization for custom hardware 

(via Autotune to optimize tiling). Conclusion

We leverage TVM to integrate a DL NN model in a 

heterogeneous system (RISC-V CPU with custom extended 

instructions and HWA). There we can validate, prepare, 

analyze, and optimize FW w/o the need for HW availability.
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%22 = strided_slice(%21, begin=[0], /*…*/)
%23 = reshape(%22, newshape=[4, 4])
%24 = cast(%23, dtype="int32")
%25 = subtract(%24, 0.5f)
%26 = cast(%25, dtype="float32")
%27 = multiply(%26, 0.0625f)
nn.softmax(%27)

%22 = strided_slice(%21, begin=[0], /*…*/)
%23 = reshape(%22, newshape=[4, 4])
@tvmgen_default_tristan_compute_lib_main_0(%2)

tvmgen_default_fused_strided_slice_reshape(/*…*/);
tvmgen_default_tristan_compute_lib_main_0(/*…*/);

// with:

tvmgen_default_tristan_compute_lib_main_0(/*…*/) {
// …
riscv_softmax(/*…*/);
// …

}
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AoT codegen

def _create_schedule(self, cfg=None):

# In case of mode profile, inject intrinsic as external
if self.config['tvm']['execution_mode']=='profile' or self.

logger.debug('>>>>>AOT Fixed intrinsic injection<<<<<')
res_outInt8 = te.compute(self.ifm.shape, lambda *index)
res_out = te.compute(res_outInt8.shape, lambda *index)
s = te.create_schedule([res_out.op])

def intrin_softmax(l):
a = te.placeholder((l,), "int8", name="a")
c = te.compute((l,), lambda i: tvm.tir.Cast("uint32"))
Ab = tvm.tir.decl_buffer(a.shape, a.dtype, name="Ab")
Cb = tvm.tir.decl_buffer(c.shape, "uint8", name="Cb")

def intrin_func(ins, outs):
ib = tvm.tir.ir_builder.create()
aa = ins[0]
cc = outs[0]
ib.emit(

tvm.tir.call_extern(
"uint8",
"riscv_softmax",
aa.access_prt("r"),
cc.access_prt("w"),
l,

)
)
return ib.get()

return te.decl_tensor_intrin(c.op, intrin_func, 
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