
Leveraging TVM to optimize AI models for

custom HW Accelerators and RISC-V extended

instructions
Alexander Belke*, Gilles Miet**

Robert Bosch Mobility Electronics, Engineering Integrated Circuits *GmbH (Germany), **SAS (France)

TRISTAN Project has received funding from the Chips Joint Undertaking (Chips-JU) under the grant agreement nr. 101095947. Chips-

JU receives support from the European Union’s Horizon Europe’s research and innovation programme and Austria, Belgium, Bulgaria,

Croatia, Cyprus, Czechia, Germany, Denmark, Estonia, Greece, Spain, Finland, France, Hungary, Ireland, Israel, Iceland, Italy,

Lithuania, Luxembourg, Latvia, Malta, Netherlands, Norway, Poland, Portugal, Romania, Sweden, Slovenia, Slovakia and Turkey.

TRISTAN

website

QR Code

Introduction

HW manufacturers development flow targets product that are:

• Efficient in term of time to market

• Flexible for easy upgrade

• Low cost with a silicon area as small as possible

• Low power via optimal choice and usage of processing

resources

We choose and customized Apache TVM as HW/SW co-design

framework enabling to generate and test the software

regardless of the HW availability.

TVM overview

TVM enables to import, optimize, compile, and run a high-level

defined Deep Learning network model; it is mainly composed of:

• A Deep Learning model Relay importer

• A graph optimizer in Relay language (Abstract Syntax Tree)

• An operator internal scheduler in TE language

• An operator low-level optimizer in TIR language

RISCV customized instruction integration into TVM

After relay graph partitioning, the TE schedule of the offloaded

operators to custom RISCV compute lib is created.

TVM customization

Processing simulation model

Creation of C++ components to simulate the HWA and the

RISC-V extended instructions. Compiled and run in the context

of TVM or outside TVM in standalone environments.

Hybrid methodology for int8 Quantization

We are using QNN operators for the Relay backend part by

adding Relay passes that transform standard float32 NN Relay

graph into a quantized version. QNN relay expressions are

inserted, and operators are replaced with their quantized

variants.

BYOC concept extended

With Bring Your Own Codegen, custom HW components

programming is left to proprietary toolchain and TVM

optimization of the related code stops at Relay level.

We modified BYOC to handle offloaded operations as a TVM

TE and TIR language representation enabling TVM to be used

for schedule definition and optimization for custom hardware

(via Autotune to optimize tiling). Conclusion

We leverage TVM to integrate a DL NN model in a

heterogeneous system (RISC-V CPU with custom extended

instructions and HWA). There we can validate, prepare,

analyze, and optimize FW w/o the need for HW availability.

AST in Relay IR

low level
optimization passes

global
optimizations
(entire graph

level)

local
optimizations

(operator
level)

front-end Relay
importers

high-end models
(Keras, TF, ONNX)

graph optimization
passes

Lowering to TE

Internal scheduling
in TE

loop optimization
passes

Lowering to TIR

Low level details in
TIR

TVM global
optimizations

TVM local
optimizations
(TE and TIR)

External
optimizations and

compilations

TVM global
optimizations

Extended TVM
backend

Custom operators
description in TE

Custom intrinsics
injection (TE or TIR)

TVM with extended BYOCTVM with default BYOC

Relay graph
partitioning

TVM backend:
standard operators

BYOC: custom
operators

Relay graph
partitioning

TVM local
optimizations
(TE and TIR)

Custom intrinsics
simulation model

Relay pattern
matching

%22 = strided_slice(%21, begin=[0], /*…*/)
%23 = reshape(%22, newshape=[4, 4])
%24 = cast(%23, dtype="int32")
%25 = subtract(%24, 0.5f)
%26 = cast(%25, dtype="float32")
%27 = multiply(%26, 0.0625f)
nn.softmax(%27)

%22 = strided_slice(%21, begin=[0], /*…*/)
%23 = reshape(%22, newshape=[4, 4])
@tvmgen_default_tristan_compute_lib_main_0(%2)

tvmgen_default_fused_strided_slice_reshape(/*…*/);
tvmgen_default_tristan_compute_lib_main_0(/*…*/);

// with:

tvmgen_default_tristan_compute_lib_main_0(/*…*/) {
// …
riscv_softmax(/*…*/);
// …

}

Relay to TIR
hook

TE schedule
creation

Intrinsic
injection

Lowering
to TIR

AoT codegen

def _create_schedule(self, cfg=None):

In case of mode profile, inject intrinsic as external
if self.config['tvm']['execution_mode']=='profile' or self.

logger.debug('>>>>>AOT Fixed intrinsic injection<<<<<')
res_outInt8 = te.compute(self.ifm.shape, lambda *index)
res_out = te.compute(res_outInt8.shape, lambda *index)
s = te.create_schedule([res_out.op])

def intrin_softmax(l):
a = te.placeholder((l,), "int8", name="a")
c = te.compute((l,), lambda i: tvm.tir.Cast("uint32"))
Ab = tvm.tir.decl_buffer(a.shape, a.dtype, name="Ab")
Cb = tvm.tir.decl_buffer(c.shape, "uint8", name="Cb")

def intrin_func(ins, outs):
ib = tvm.tir.ir_builder.create()
aa = ins[0]
cc = outs[0]
ib.emit(

tvm.tir.call_extern(
"uint8",
"riscv_softmax",
aa.access_prt("r"),
cc.access_prt("w"),
l,

)
)
return ib.get()

return te.decl_tensor_intrin(c.op, intrin_func,

	Slide 1

