@ Trmk{ q ferrous systems

Bringing Tier-1 support for
64-bit RISC-V Linux to Rust

We are bringing the 64-bit RISC-V Linux Ru St-
port of Rust to Tier-1 ("guaranteed to ’
work") from its current Tier-2 status.

... IS an open-source systems programming language designed
to empower everyone to build reliable and efficient software:
Safety - Performance - Productivity

Toolchains like Ferrocene already enable Rust

. . .« . - ... Is a statically-typed compiled language.
adoption in mission-critical systems. y=p P guag

. Its powerful language-level static analysis prevents use-after-free,
The partnership between Ferrous Systems and double-free, shared mutability, threading race hazards, and more.

Codethink Is ena b"ng adoption on a wider range The libraries and binaries (known as crates) are composed of modules,

. which have clear type-checked public, semi-private and private APIs.
of embedded hardware and operating systems. | | |
... IS cross-platform and supports a wide range of Operating Systems:

4)

® libors U X

— Windows, Linux, macOS

src > & lib.rs > ...
1 //! Parsers for various /proc files

2 /7! -
3 //! We cover formats such as those used in " /proc/meminfo” and ~/proc/vmstat’ FreeBSDINetBSD/openBSDIIIIumos
4
5 use std::path::{Path, PathBuf};
6 - VxWorks, QNX, LynxOS-178
7 /// A parser for files which are key/value sequences
8 /17
5 /// We parse Lines approxinating: | - RTOS like ThreadX, FreeRTOS or RTEMS, and
10 /// “"\s*(?P<key>\S+)\sx:?\sx(?P<value>\S+).*$
2 implementations | 5 references
11 pub struct KVParser { .
12 location: PathBuf, - bare-metal platforms with no OS or heap
13 colons: bool,
14 whitespace_in_values: bool,
15 buffer: [u8; 8192], // A buffer so we don't allocate at parse time
16}
17

18 impl KVParser {
p Run Doctest
19 /// Prepare a new KVParser ready for use

20 11/ — Cargo, the package manager and build system
21 /// We can choose to use colons as the separator, and whether or
22 /// not to allow for whitespace in values.
> FAR — rustdoc, the documentation generator
25 /// # use procparser::KVParser;
26 /// let parser = KVParser::new("/proc/meminfo", true, false); . .
27 /" — a test system, which supports unit tests
0 references . .
28 pub fn new(location: impl AsRef<Path>, colons: bool, whitespace_in_values: bool) — Self { |ntegrat|0n teStS and dOC teStS
29 Self {
30 location: location.as_ref().to_path_buf(), : . : :
o ;EE:;;M o — a linter, clippy, which spots code which
33 buffer: [0; 81921, Is technically correct but not idiomatic
34 }
35 }
36
p Run Doctest
37 /// Change the filename associated with this parser
38 Hr/ . .
2 ... uses LLVM and is a cross-compiler out-of-the-box.
40 /// # use procparser::KVParser; : - .
. U wee ra s omine path It supports a wide range of CPU architectures:
42 /// let mut parser = KVParser::new("/proc/meminfo", true, false);
43 ///
Lt /// parser.set_location("/proc/status");
45 /17
46 /// assert_eq!(parser.location(), Path::new("/proc/status")) .
47 /o — Intel 1686 and x86-64
0 references
48 pub fn set_location(&mut self, location: impl AsRef<Path>) {
49 self.location = location.as_ref().to_path_buf(); _ RISC_V 32_b|t and 64_b|t
50 ¥
51
P Run Doctest
52 /// Read and parse the file we've been prepared for — Arm CorteX—M’ COrteX—R and CorteX—A
53 /17
54 /// The number of KV pairs which were passed to the callback will be returned
55 /// on success. _ SPARC
56 /17
57 /72
58 /// # use procparser::KVParser;
59 /// let mut parser = KVParser::new("/proc/meminfo", true, false); - PowerPC, MIPS, and mOI‘el
60 ///
\ %

@ www.codethink.co.uk . ferrous-systems.com

