Utilize Sampling and Calibrated Microarchitectural Simulator to Boost Hardware/Software Co-design of Xiangshan Processor

Yaoyang Zhou¹, Lingrui Gou¹², Yan Xu¹, Hao Zhen¹², Yungang Bao¹² Beijing Institute of Open Source Chip¹ Institute of Computing technology Chinese Academy of Sciences²

Checkpoints and workflows

- Generic checkpoint format easy to integrate into simulator/RTL in early stages
- Pre-silicon Hw/Sw codesign with both simulator and RTL feedback
- Correlation against full workloads on FPGA and real silicon
- Pure software-based cpt restoring

Early-stage performance feedback for Hw/Sw co-design

Microarchitecture

- Estimated SPECint2k6 score = 45@3GHz
- Top-down counters and analysis suite
- Multi-level TLBs and parallel coalescing PTW with RV-H extension
- Tightly-coordinated composite prefetcher with mutual parameter updating, cooperated training, and flexible offloading
- Decoupled frontend 3-level branch predictors
- Distributed backend with 2x128 bit OoO vector pipeline
- Tightly-coordinated composite prefetcher

Checkpoint performance is highly-correlated with full workloads

• Pre-silicon Hw/Sw co-design with Microarchitectural Simulator

Simulator repo:

https://github.com/OpenXiangShan/GEM5

My Homepage:

https://shinezyy.github.io/ArchShineZ/

