
Enhancing the RISC-V Firmware Development

Workflow through a Flexible Tooling Environment
Christian Sommerauer1, Christian Seifert1, Christian Steger1 and Tiberio Fanti2

1Institute of Technical Informatics, Technical University of Graz

{christian.sommerauer, christian.seifert, steger}@tugraz.at
2NXP Semiconductors Austria GmbH and Co KG

tiberio.fanti@nxp.com

TRISTAN Project has received funding from the Chips Joint Undertaking (Chips-JU) under the grant agreement nr. 101095947. Chips-

JU receives support from the European Union’s Horizon Europe’s research and innovation programme and Austria, Belgium, Bulgaria,

Croatia, Cyprus, Czechia, Germany, Denmark, Estonia, Greece, Spain, Finland, France, Hungary, Ireland, Israel, Iceland, Italy,

Lithuania, Luxembourg, Latvia, Malta, Netherlands, Norway, Poland, Portugal, Romania, Sweden, Slovenia, Slovakia and Turkey.

Overview

• Division of the Firmware Development

Process

• Eight specialized Submodules

• Whole development process

covered

• No RTL Code for most of the

development process required

• Fast Prototyping of

• ISA Extensions

• Algorithms

• Easy Adaptation due to modular

structure

• PoC on NFC-Transceiver Use Case

Dashboard

• Provides User with a

Graphical User Interface

• Selection of Firmware

Versions

• Environment Configuration

dependent on Development

Stage

• Test Result Visualization

Build System

• Automation of firmware

building process

• Based on User

Configuration

• Additionally compiles and

generates files for analyzing

the resulting binaries on an

assembly level

Firmware

• Repository for:

• Firmware Versions

• Required Libraries

• Configuration Files

• Supplies Build System and

Coprocessor Simulator

Coprocessor

Simulator

• Used during earlier

Development Stages

• Faster Execution Speed

• No RTL-Code required

• Runs on Host-machine

• Testing of new Ideas or

ISEs for the coprocessor

Performance

Analysis

• Analyzes Sample

Processing Time

• Uses Output from the

Testbench

• Used for Data Gathering

and Visualization of Results

Testbench

• Runs the Core-V-Verif

Project [2] provided by the

OpenHW Group [1]

• Simulates Firmware running

on the selected core [3]

• Core coupled with a

Coprocessor (RTL-Code)

Testing /

Verification

• Compares the results from

the Testbench or

Coprocessor Simulator with

Stimuli Information

• Generates a Test Report for

the Dashboard

Stimuli Generation

• Provides the test

environment with a stream

of samples as input

• Octave-based framework

• Use-Case specific params

and resulting output stream

References

[1] OpenHW Group. Accessed: 2024-03-18. 2024. url: https://www.openhwgroup.org/.

[2] OpenHW Group. CORE-V Verification Testbench. Accessed: 2024-03-18. 2024. url: https://github.com/openhwgroup/core-v-verif.

[3] OpenHW Group. CV32E40X RISC-V Core. Accessed: 2024-03-18. 2024. url: https://github.com/openhwgroup/cv32e40x.

Results / Conclusion

• Introduction of modular Tooling

Environment for Firmware

Development

• Use Case Flexible

• Easily Extendable or Customized

as needed

• Proof of Concept implementation

showed an increase in productivity

• Approach may be of interest for

teaching environments Figure. Coprocessor Simulator Overview as implemented in PoC

TRISTAN Project Extended Abstract

	Folie 1

