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Overview

• Division of the Firmware Development 

Process

• Eight specialized Submodules

• Whole development process 

covered

• No RTL Code for most of the 

development process required

• Fast Prototyping of

• ISA Extensions

• Algorithms

• Easy Adaptation due to modular 

structure

• PoC on NFC-Transceiver Use Case

Dashboard

• Provides User with a 

Graphical User Interface

• Selection of Firmware 

Versions

• Environment Configuration 

dependent on Development 

Stage

• Test Result Visualization 

Build System

• Automation of firmware 

building process

• Based on User 

Configuration

• Additionally compiles and 

generates files for analyzing 

the resulting binaries on an 

assembly level

Firmware

• Repository for:

• Firmware Versions

• Required Libraries

• Configuration Files

• Supplies Build System and 

Coprocessor Simulator

Coprocessor 

Simulator

• Used during earlier 

Development Stages

• Faster Execution Speed

• No RTL-Code required

• Runs on Host-machine

• Testing of new Ideas or 

ISEs for the coprocessor

Performance 

Analysis

• Analyzes Sample 

Processing Time

• Uses Output from the 

Testbench

• Used for Data Gathering 

and Visualization of Results

Testbench

• Runs the Core-V-Verif 

Project [2] provided by the 

OpenHW Group [1]

• Simulates Firmware running 

on the selected core [3]

• Core coupled with a 

Coprocessor (RTL-Code)

Testing / 

Verification

• Compares the results from 

the Testbench or 

Coprocessor Simulator with 

Stimuli Information

• Generates a Test Report for 

the Dashboard

Stimuli Generation

• Provides the test 

environment with a stream 

of samples as input

• Octave-based framework

• Use-Case specific params 

and resulting output stream
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Results / Conclusion

• Introduction of modular Tooling 

Environment for Firmware 

Development

• Use Case Flexible

• Easily Extendable or Customized 

as needed

• Proof of Concept implementation 

showed an increase in productivity

• Approach may be of interest for 

teaching environments Figure. Coprocessor Simulator Overview as implemented in PoC
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