CHERI RISC-V: A Case Study on the CVA6

Bruno Sá Donato Ferraro José Martins Everton Matos Andrea Bastoni Sandro Pinto Centro ALGORITMI/LASI - Universidade do Minho, Zero-Day Labs, Minerva Systems SRL, Technology Innovation Institute

Abstract

We report our work on extending the open-source RISC-V CVA6 with CHERI support. Our implementation complies with version 9 of the CHERI RISC-V specification. Currently, we are evaluating and validating our design in an experimental single-core system-on-chip (SoC) in a simulation and FPGA emulation environment. To our knowledge, this will be the first public RISC-V CPU with hardware virtualization and CHERI support. We plan to release our CVA6H-CHERI core as an open-source artifact to the RISC-V and CHERI community.

CVA6H-CHERI Overview

Features and Status

• **RISC-V CHERI ISA v9 Cambridge**

- Tagged-memory support
- Compressed Capability Format CHERI-128

- RV64 (MMU and MMU-less)
- Merged Capability Register File
- Supports Integer and Capability mode
- Hybrid and Pure Capability Code
- Optional extension

Validation

- TestBenchs Simulation(Done)
 - Unit Tests Cheri Logic Unit, Branch Unit, and Load/Store Unit
- FPGA Emulation (Done)
 - Experimental SoC with Tagged Memory support
- Baremetal Tests (WiP)
 - Handwritten C Tests built atop the riscv-hyp-bare
- TestRig(WiP)

- CHERI SCRs
- Capability-Manipulation Instructions
- CHERI & Hypervisor extension
 - Hyp SCRs (vstcc, vsepcc, vstdc)
 - Hypervisor Load/Store Cap. Instructions (hlv/hls)

Hardware Resources

Module	Resource	Utilization
cva6 SoC	LUT	101587 (+36%)
	FF	56107 (+33%)
cva6	LUT	68991 (+38%)
	FF	26284 (+31%)
wt_cache_subsystem	LUT	9963 (+23%)
	FF	3034 (+36%)

- CVA6 RVFI-DII Support (Done)
- Top-level Verilator model (WiP)
- Bao Hypervisor (WiP)
 - Started porting Bao hypervisor to CHERI using QEMU
- CheriBSD (WiP)

cheri unit	LUTs	1953 (1.9%)
tag controller	LUTs	6662 (6.6%)
	FFs	6165 (10%)

Post-synthesis hardware utilization results for single core CVA6H-CHERI SoC targeting a Genesys 2 FPGA with TagController.

