Atalanta: Open-Source RISC-V Microcontroller for Rust-Based Hard Real-Time Systems

Abdesattar Kalache Henri Lunnikivi Antti Nurmi

> Tampere University, Tampere, Finland RISC-V Summit Europe 2024

Interrupt Latency

- The interrupt latency of a processor is a fundamental characteristic of real-time performance and is formed by two components:
 - Hardware Latency Initial reaction latency of processor to interrupt request.
 - Context Switch Latency Latency of storing/restoring processor state (register file, CSRs) from/to the stack.

RTIC Framework

- The Real-Time Interrupt-Driven Concurrency Framework (RTIC) [1] is a task-based alternative to thread-based frameworks with formal guarantees for
 - memory safety, absence of data races and defined behavior due to the Rust language and
 - deadlock-free execution, single shared stack execution, single dispatch and bounded priority inversion due to the framework itself.
- Tasks are implemented as interrupt handlers, thus task switching is as efficient as the interrupt handling mechanism of the hardware without any additional overhead.

RT-Ibex

 The open-source lbex processor was extended with a configurable Future Work interrupt interface and interrupt-level-based preemption to create the core-local interrupt controller (CLIC)-compliant RT-lbex.

Microcontroller Architecture

 A minimal, extendable architecture designed for low-latency memory access to accelerate context switching.

Comparison with State-of-the-Art

This Work	RISC-V	CLIC	Software Stacking	EABI	12	5	16	21
Balas et al.[3]	RISC-V	CLIC	HW Stacking + Register Banking	EABI	12	6 ^a	18	6 ^b
Balas et al.[2]	RISC-V	CLINT	Software Stacking	EABI	12	6 ^a	18	24
SiFive E21	RISC-V	CLIC	Software Stacking	n.a	n.a	n.a	n.a	20
Cortex [®] -R5	ARM	VIC/GIC	Register Banking	AAPCS	9	n.a	n.a	20
Cortex®-M3/4	ARM	NVIC	Hardware Stacking	AAPCS	9	6	9	12
Cortex®-M0+	ARM	NVIC	Hardware Stacking	AAPCS	9	6	n.a	15
Cortex [®] -M0	ARM	NVIC	Hardware Stacking	AAPCS	9	6	n.a	16
Microcontroller	ISA	Interrupt Controller	Interrupt Context-Save	ABI	instruction Count	Ta	Ts	Interrupt Latency
Microcontroller	ICA	Interrupt	Interrupt	ΛDI	instruction			T

^a Susceptible to jitter from multi-cycle instructions prior to vector table entry fetch.

- Architectural Optimizations clock domain split, improved hierarchy, hardware stacking.
- Case Studies Analysis of real-time performance with formal and empirical methods.
- ASIC Implementation PPA analysis with 22 nm technology node, memory models.

- [1] RTIC Contributors. RTIC: The Hardware-Accelerated Rust RTOS. https://rtic.rs/2/ book/en/. 2024.
- [2] R. Balas and L. Benini. "RISC-V for Real-time MCUs Software Optimization and Microarchitectural Gap Analysis". In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 2021, pp. 874–877.
- [3] R. Balas, A. Ottaviano, and L. Benini. "CV32RT: Enabling Fast Interrupt and Context Switching for RISC-V Microcontrollers". In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems (2024), pp. 1–13.

^b Interrupt latency can increase in the case of nested interrupts.