
The RISC-V Vector Extension (RVV) promises an enhanced
performance and power efficiency across various complex
computational tasks. However, the efficient utilization of RVV
demands careful consideration of the optimization approach.
This project examines strategies for accelerating this process.
Key challenges include assessing performance differences
among algorithmic approaches and overcoming initial hardware
constraints.

FireSim provides a comprehensive solution by offering advanced
software and hardware simulation capabilities. Utilizing FireSim, we
started the process of enhancing source code with RVV instructions
(called vectorization) for the pixman project. Our experience outlines
the efficacy of a cloud-based FPGA simulation in expediting software
development for emerging ISA extensions. Overall, FireSim facilitates
faster iteration cycles and informed design decisions, benefiting
individual developers and fostering collaboration in remote teams.

Accelerating software development
for emerging ISA extensions with
cloud-based FPGAs: RVV case study

Background

� Support porting effort for open source Linux
packages used in Tizen OS for RISC-V vector
extension (RVV1.0) – chosen pixman, which is used
in many GUI applications�

� At the start of the project, there were no hardware
targets with RVV1.0 available on the market, and
there were no release dates of potential candidates�

� QEMU is not suitable for RVV benchmarking, as it
doesn't implement a concrete hardware
implementation, and rather translates RVV to host's
SIMD code.

Requirements

� Full RVV1.0 support to enable software engineers to utilize the full capabilities of the
extension in the ported software.�

� Linux support because ported software is Linux-based. �
� MMU support required to run full Linux. �
� Possible to run on an FPGA – performance requirement to perform meaningful

benchmarks. �
� Easy to use and deploy – the goal is to provide software developers with a ready-

made development and testing environment.�
� Support for perf profiling – for comparing different implementations. �
� Option to adjust microarchitecture to benchmark code on low- to high-end

configurations (e.g., adjustable VLEN, lane count, etc).

Project timeline

Research into CPU
cores with RVV1.0

�� Tenstorrent Ocelot –
failed implementation
on FPGA�

�� PULP Spatz – not
designed to be fully
RVV1.0-compliant�

�� CHIPS Alliance T1 –
no plan to implement
MMU support�

�� PULP Ara – potentially
the best candidate.

Selected

PULP Ara

�� Vector coprocessor for
OpenHW Group CVA6 –
a quality, open source,
application class RV64
core�

�� Claimed support for
RVV1.0�

�� Supports multiple
configurations of VLEN
and lane count�

�� Work-in-progress MMU
support.

Research into the
hardware platform

�� COTS FPGA boards capable of
fitting a large RVV core are costly,
and not suitable for an
experimental project�

�� Alternative: AWS EC2 F1 cloud
instances with Xilinx VU9P FPGAs�

�� FireSim, along with Chipyard
project, provide an easy-to-use
framework to simulate a complete
SoC at near-FPGA-prototype
speeds on cloud or on-premises
FPGAs.

Integrating PULP Ara
into Chipyard

�� The base was the existing
CVA6 integration�

�� The upstream Ara
implementation lacks MMU
support, but working
community efforts exist�

�� Experiments with different RVV
configurations. First iteration�
� 2 lanes, VLEN = 204�
� fmax = 80 MH�
� 31% LUT, 12% FF, 19% BRAM,
5% URAM, 2% DSP

Benchmarking RVV
code on the target

�� The initial rvv-bench
suite run was
unsuccessful due to bugs
in PULP Ara�

�� Subsequent rvv-bench
instruction test confirmed
erroneous behavior for
some vector instructions�

�� Development of several
pixman algorithms, and
comparison with scalar
versions.

Benchmarking results Conclusions

RGB565 to RGB888 conversion

Initial implementation was hand
optimized after reviewing benchmarks�
� 24 → 18 instruction�
� 1383 → 1099 cycles

scalar 120 Mc*

vector 11.5 Mc → speedup ×10.4

asm
asm *

asm 0x
asm 0x
asm <<
asm <<
asm
asm
asm
asm 0x

asm
asm
asm
asm
asm
asm
asm <<
asm *

(: (vlen) : (len_left));

(:: (cur_s));

(:: ());

(:: ());

(:: ());

(:: ());

();

();

();

(:: ());

();

();

();

();

();

();

(:: ());

(: (cur_d));

"vsetvli %0, %1, e16, m4, ta, ma" "=r" "r"
"vle16.v v16, %0" "m"

"vand.vx v20, v16, %0" "r"
"vand.vx v28, v16, %0" "r"
"vwmulu.vx v0, v20, %0" "r"
"vwmaccu.vx v0, %0, v28" "r"
"vsetvli x0, x0, e32, m8, ta, ma"
"vsrl.vi v8, v0, 5"
"vor.vv v0, v0, v8"
"vand.vx v0, v0, %0" "r"

"vsetvli x0, x0, e8, m2, ta, ma"
"vnsrl.wi v8, v16, 5"
"vsll.vi v8, v8, 2"
"vsrl.vi v10, v8, 6"
"vwaddu.vv v16, v8, v10"
"vsetvli x0, x0, e16, m4, ta, ma"
"vwmaccu.vx v0, %0, v16" "r"
"vse32.v v0, %0" "=m"

// Handle R and B channels.

// Handle G channel.

F800
001F

1 8
1 3

FF00FF

1 8

UN8_rb_MUL_UN8

scalar 10.2 Mc*

vector 1.53 Mc → speedup ×6.7

UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8

scalar 38.4 Mc*

vector 3.15 Mc → speedup ×12.2

Our experience with FireSim demonstrates the
potential of the cloud-based FPGA simulation
for accelerating software development for
emerging ISA extensions like RVV. By providing
access to cost-effective, scalable hardware
resources and comprehensive simulation
capabilities, FireSim enables faster iteration
cycles and more informed design decisions.
This approach not only benefits individual
developers but also facilitates collaboration in
remote teams, bridging the gap between
hardware and software development efforts.

Marek Pikuła

Samsung R&D Institute Poland 
m.pikula@partner.samsung.com

Embedded developer by day, DevOps engineer by night. Marek creates high-
quality, well-tested and documented solutions in established technologies while
actively exploring the new and shiny. He feels the best in complex projects requiring
system-level and in-detail perspectives, connecting multiple domains from
hardware through gateware and firmware up to the software running in the cloud.

Marek Szyprowski

Samsung R&D Institute Poland 
m.szyprowski@samsung.com

Marek is a Linux kernel developer at Samsung R&D in Warsaw, Poland.
He specializes in embedded systems. His ongoing effort is to provide
better support for Samsung SoC in the Linux kernel. In recent years
he focused on the day-to-day testing of the Linux kernel project.

*Mc – millions of cycles RISC-V Summit Europe 2024

https://github.com/MarekPikula/RISC-V-Summit-Europe-2024

