

Security, Safety, and Predictability of **CHERI RISC-V for Drone Systems**

Scope of the Work

- There are several use cases in which drones can be deployed, such as autonomous systems, robotics, and real-time operations
- Current architectures: e.g., PX4/NuttX: for small embedded systems, security and safety isolation capabilities are not available
- CHERI has the potential of being a game changer in this field
- Investigate the potential impact of CHERI RISC-V in terms of autonomy, communication, and data processing in drone systems
- Evaluation of predictability, security, safety aspects, and real-time
- Arm Morello as alternative platform for comparisons

- 2x RISC-V 64-bit cores (CVA6) with **Hypervisor extension** supporting **CHERI**
 - 8x RISC-V 32-bit accelerators (a.k.a. PULP Cluster)
 - Tag Controller
 - HyperRAM
 - OpenTITAN Secure Subsystem
 - Multiple I/O:
 - UART
 - o SPI
 - o Ethernet...

WiP: CHERI-UAV Software Architecture

• PX4 is designed as a modular and flexible flight control system and is built upon NuttX RTOS.

Each module implements specific functionalities

 CHERI enables compartmentalization and secure communications between modules

Investigation Direction:

- CHERI-aware Hybrid NuttX with *Intravisor* [1] component and PX4 as cVMs
- UAVs HiL evaluation and assessment:
 - Measure end-to-end latencies, real-time properties (e.g., deadlines), etc.
- Current and next steps:
 - Implement CHERI-aware NuttX/PX4
 - Evaluation of real-time and isolation capabilities
 - Comparison with Arm Morello
 - Isolation and real-time features
 - QoS
 - Combine HW-virtualization and CHERI
 - CHERI-aware Bao hypervisor

