
Enhancing Privilege Architecture Support in RISC-V ISAC (RISCOF)
Muhammad Hammad Bashir , Umer Shahid , Allen Baum , Pawan Kumar Sanjaya 1,3 1,3 2 4

10xEngineers
Esperanto Technologies

Department of Electrical Engineering, U.E.T Lahore
Department of Computer Science, University of Toronto

1

2

3

4

Abstract Overview of RISCOF and RISC-V ISAC

Enhanced Features

Translator support in RISC-V ISAC

Results

references

RISCOF, a Python-based framework, ensures RISC-V processor
implementations comply with instruction set simulators like Spike and
Sail. It supports both manual and automated test suite generation via
RISC-V CTG, with coverage analysis performed through RISC-V ISAC.
However, the coverage analysis of privilege architectural tests has been
limited due to incomplete support in RISC-V ISAC. To address this, we
have introduced new features in RISC-V ISAC specifically for privileged
architecture, along with a more efficient method for writing coverpoints.
These enhancements aim to improve compliance testing comprehensively.

RISCOF - The RISC-V Compatibility Framework is a Python-based tool for testing
RISC-V targets (hardware and software) against a standard RISC-V reference model
using architectural assembly tests.

RISC-V ISAC, part of the RISCOF
Framework, is an open-source tool that
verifies the thoroughness and quality of
these test suites. It defines and checks
ISA-level coverpoints, generating
comprehensive coverage and data
propagation reports for accurate testing.

The necessary track variables and functions for the Privileged
Architecture were added in the RISC-V ISAC. The features like the
macros support and other useful features for the Virtual Memory Support
including SV32, SV39, SV48 and SV59 are mentioned below:

1. Pawan Kumar S et al. “Automating Generation and Maintenance of a
High-Quality Architectural Test Suite for RISC-V”. In: Proceedings of the
Sixth Workshop on Computer Architecture Research with RISC-V, Co-
located with ISCA (2022).
(url:https:// carrv.github.io/2022/papers/CARRV2022_paper_2_Kumar.pdf)
2. RISC-V. Sail RISC-V model. (https://github.com/riscv/sail-riscv). 2024
3. RISC-V International. Spike, a RISC-V ISA Simulator.
(https://github.com/riscv/riscv-isa-sim). 2024
4. RISC-V International. RISC-V Architectural Tests.
(https://github.com/riscv/riscv-arch-test). 2024
5. RISC-V Software Source. RISC-V CTG, Compliance Test Generator.
(https://github.com/riscv- software- src/riscv-ctg). 2024.
6. RISC-V Software Source. RISC-V ISAC, a coverage analyser.
(https://github.com/riscv- software- src/riscv-isac). 2024

The updated features for the privileged architecture were utilized to write coverpoints for
both Physical Memory Protection and Virtual Memory
By using the Translator, we achieved up to 2x reduction in the size of coverpoints for
Physical Memory Protection.

Translator support introduces a more concise format to define coverpoints, utilizing a variety
of rules and operations, including ranges, macros, placeholders, loops, enumeration with
operations, and advanced range based

RISC-V ISAC Flow without the translator Support

Updated RISC-V ISAC flow

enumeration to reduce redundancy in
user-defined coverpoints.

Coverpoint format example for the Translator

The first coverpoint under the label
csr_comb label will be evaluated to total
of 8 coverpoints since the maxium
range is 8. The ${custom_macro} can be
used across multiple coverpoints to
reduce redundancy.

For further information, please refer to
the QR code at the end.

$<number> refers to the placeholder
that points to the previous value being
used in the {}/curly braces. {}[] is a
feature used for a list whose index will
be a number written in [] and will be
pointing to some previous brace.

