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Abstract
This paper evaluates CNN workloads on the RISC-V Vector Extension (RVV) 1.0 using GCC 14 and LLVM 19.

We benchmark auto-vectorized and manually optimized TinyML kernels on a hardware platform, analyzing
runtime and code size trade-offs. Results show that LLVM 19 provides a better balance between both metrics,
while GCC 14 exhibits greater variability.

Introduction
With each new release of software toolchains such
as GCC and LLVM, support for vector and single-
instruction multiple-data (SIMD) instruction set ar-
chitectures (ISAs) advances. Auto-vectorization is
becoming increasingly capable of handling a broader
range of workloads and patterns. At the same time,
manually written vectorized code benefits from en-
hanced optimizations, improved heuristics, and more
refined cost models. The presented results provide
insights into optimizing RISC-V SW and ML deploy-
ment toolchains, as well as kernel libraries for TinyML
workloads.

Background
The RISC-V Vector Extension extends the scalar
RISC-V ISA by 32 new vector registers of length VLEN
bits each, supporting dynamic adjustments and group-
ing of vector registers, while maintaining a vector-
length agnostic design. Since its ratification in 2021,
the first commercially available hardware to implement
RVV 1.0 is the T-Head XuanTie C908 core, integrated
into the CanMV K230 board. muRISCV-NN [1] is a
suite of optimized deep learning kernels for embedded
systems. It addresses the need for a lightweight com-
pute library that can utilize RVV for quantized ML
workloads. While both the LLVM Framework [2] and
the RISC-V GNU Toolchain offer auto-vectorization
capabilities for RVV 1.0, achieving efficient vectoriza-
tion remains a challenge, as highlighted in [3]. The
auto-vectorization performance of LLVM 17 and GCC
14 is analyzed in [4] and [5]. This report extends their
analysis by evaluating the latest compiler versions,
LLVM 19 and GCC 14, and further comparing their
auto-vectorization against manually vectorized kernels
using muRISCV-NN on real hardware.
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Experiments
In contrast to the experiments performed in [1], which
have been conducted on an instruction set simulator
(ISS), the following analysis is based on the K230
hardware platform. The heterogeneous SoC features a
C908 core with a small vector length of 128 bit and an
SIMD datapath made up of two 64 bit-wide execution
units. A Linux-based execution environment running
on the RVV-enabled core was chosen for benchmarking,
as the vendor-provided RTOS lacks compatibility with
upstream versions of the RISC-V GNU toolchain.

The MLPerf Tiny benchmarking suite [6], consisting
of four quantized neural networks (QNNs) optimized
for microcontrollers, was employed in this study. Given
the integer nature of these models , only the perfor-
mance of integer vector operations is analyzed. The
TensorFlow Lite for Microcontrollers (TFLM) frame-
work [7] was used to execute the models on the em-
bedded device. Three kernel variants were evaluated:

• Scalar: Standard kernel implementations com-
piled for RV64GC.

• Vector (Auto): Standard kernel implementa-
tions compiled with auto-vectorization enabled
(RV64GCV).

• Vector (Manual): Manually vectorized kernel
implementations (RV64GCV).

To ensure fair comparisons, the manually vec-
torized implementations were compiled with auto-
vectorization explicitly disabled, preventing any un-
intended performance degradation due to conflicting
compiler optimizations. Experiments were conducted
across up to five different configurations, as summa-
rized in Table 1. Configuration II is skipped for LLVM
as it yields the same results as configuration I.

The primary performance metrics considered in this
evaluation include the runtime improvement achieved
through vectorization and the associated code size
overhead, specifically measured using the static library
libmuriscvnn.a. Since TinyML applications rely ex-
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Table 1: Compiler Configurations

Optimize Unroll GCC LLVM
I Size (-Os) ✓ ✓
II Size (-Os) ✓ ✓
III Speed (-O3) ✓ ✓
IV Speed (-O3) ✓ ✓ ✓
V Speed (-O3) ✓a ✓
a Custom LLVM Unrolling heuristic

clusively on statically allocated memory buffers, the
impact of auto-vectorization on the RAM usage is
negligible and therefore excluded from the discussion.
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Figure 1: Relative runtime and code size (library only).
Toolchain (color) performance compared for different ker-
nels (markers) and configurations (see Table 1).

The results for a residual neural network (ResNet)
are depicted as a scatter plot in Figure 1. Further CNN
models have been evaluated and show similar results.
To enable a relative comparison of the obtained per-
formance metrics, scalar kernels compiled with LLVM
without loop unrolling were selected as the baseline
(dotted lines). An analysis of the scalar performance
reveals that GCC generally achieves higher execution
speed at the cost of increased code size in configura-
tions III and IV. Conversely, in certain cases (I & II),
GCC produces code that is 15 − 20% smaller while
introducing an up to 75% runtime increase compared
to LLVM. To balance these trade-offs between runtime
efficiency and code size, the following constraints are
introduced (highlighted as red areas):

• The execution time must not exceed that of the
selected baseline.

• The code size overhead must not exceed 200%.

Applying these constraints results in the elimina-
tion of certain configurations, specifically the auto-
vectorized GCC implementations, as well as configura-
tions III and IV for manually vectorized kernels com-
piled with GCC. Further data points can be excluded if
they are dominated by others, which can be determined
by constructing a Pareto front (dotted lines) within
the remaining feasible region. This eliminates the
configurations III-V for manually vectorized kernels

compiled with LLVM. Overall, the auto-vectorization
capabilities are very limited or non-existent in configu-
rations I vs. II leading to the conclusion that optimal
code size while using vector instructions can only be
achieved by using manually written kernels.

Conclusion
The experimental results indicate that the impact of
compiler optimization flags, loop unrolling, and vec-
torization on code size overhead remains consistent
across the evaluated benchmarks. However, the se-
lection of optimal compiler flags for optimal runtime
performance is highly task-dependent. On the given
target hardware, LLVM 19 provides the best balance
between code size and performance, whereas GCC
tends to favor one extreme over the other. Addi-
tionally, LLVM demonstrates greater sophistication
in compiling both auto-vectorized and manually vec-
torized code. Considering LLVM has offered partial
support for RVV auto-vectorization since version 14
in 2022, while GCC only began integrating support in
2024, GCC’s performance is not significantly behind.
It’s also important to note that these conclusions are
based on quantized CNNs and may not generalize to
other workloads. As toolchain releases continue to
evolve, further improvements are expected, making
the comparison more competitive. The muRISCV-NN
library, along with the scripts used for this analysis,
are available online1.
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