Chair of Electronic Design Automation Department of Computer Engineering School of Computation, Information and Technology Technical University of Munich

Benchmarking TinyML CNN Kernels on RVV 1.0 Hardware: GCC 14 vs. LLVM 19

Philipp van Kempen, Benedikt Witteler, Jefferson Parker Jones, Daniel Mueller-Gritschneder, Ulf Schlichtmann

			tic	
	Οι	IV d) .
		-		

SIMD vs. Vector Processing

- SIMD (Single Instruction Multiple Data): Fixed length, software hard to maintain
- Vector: Length-agnostic, one software fits all
- TinyML

- **Experiments** Setup • Toolchains: LLVM 19 vs. GCC 14 • Models: Quantized Convolutional Neural Networks (CNNs) from TinyMLPerf Suite [3]:
 - Image Classification (resnet)
 - Speech Recognition (aww)
- Run AI inference locally on low-power MCUs instead of in the cloud
- Advantages: Greater privacy, lower power and cost, reduced latency
- Disadvantages: Limited computational resources and memory

Auto-Vectorization vs. Manual Vectorization

• Capability of handling SIMD/Vector workloads automatically vs. benefits from enhanced optimizations in manually written vectorized code

– Hardware Background -

RISC-V Vector Extension (RVV)

- Extends the scalar RISC-V ISA by 32 new vector registers of length VLEN bits each
- Supports dynamic register grouping and vector-lengthagnostic operations
- Ratified in 2021 as RVV 1.0

Used Hardware [5]

• CanMV K230 Board: T-Head XuanTie C908 core, 512 MiB LPDDR3 RAM, microSD card

• C908 Core: Vector length (VLEN) of 128 bits and SIMD datapath composed of two 64-bit-

High Speed	Security Subsystem	SYSCTL	PMU Subsystem	AI Subsystem
USB 2.0 <i>OTG x2</i>	AES/SHA/RSA /ECC	Timer x5	RTC	KPU INT8 / INT16
SD/eMMC HC x2	SM2/SM3/SM4	Mailbox	CLK & POR	SRAM 2MB
SDR104/HS200	TRNGOTP160Mbps32KB	TS x1 CRP	Power on Enable	FFT 4096 FFT/IFFT
SPI OPI DRT200				Al 2D Engine Affine/Crop
SPI QPI x2	CPU1 1.6GHz	CPU0 800MHz	K220	Resize/Padding/Shift
SDR100	Vector RVV1.0 L1 32KB I/D	L1 32KB I/D	N230	Storage Management
	L2 230NB	22 12000		DDR Subsystem
Low Speed				DDR3L/LPDDR3
UART x 5	ISP	Multi-Media Su	bsystem	X16/x32b 1600/2133/2667Mbps
I2C x 5	x3 4k@60 HDR	Video Subsystem	Display	Share Memory
I2C x 5 PWM x 6	x3 4k@60 HDR ISP 4K@30fps	Video Subsystem H264/HEVC/JPEG	Display VO 1080P60	Share Memory SRAM 2MB SDMA/PDMA
I2C x 5 PWM x 6 ADC 12b@1Mbps	x3 4k@60 HDR ISP 4K@30fps DW 4K@30fps	Video Subsystem H264/HEVC/JPEG Encoder 4K20fps Decoder 4K40fps	Display VO 1080P60 MIPI DSI 1x4/1x2 Iane 1.5Gbps	Share Memory SRAM 2MB SDMA/PDMA & Channels 2D GDMA
I2C x 5 PWM x 6 ADC 12b@1Mbps GPIO x 64	x3 4k@60 HDR ISP 4K@30fps DW 4K@30fps Down Scale 4 Paths	Video Subsystem H264/HEVC/JPEG Encoder 4K20fps Decoder 4K40fps	Display VO 1080P60 MIPI DSI 1x4/1x2 Iane 1.5Gbps	Share Memory SRAM 2MB SDMA/PDMA & Channels 2D GDMA Engine OSD/CSC/Rotation
I2C x 5 PWM x 6 ADC 12b@1Mbps GPIO x 64 Codec/I2S	x3 4k@60 HDR ISP 4K@30fps DW 4K@30fps Down Scale 4 Paths MIPI CSI 3x2 Lane 1x4+1x2 Lane	Video Subsystem H264/HEVC/JPEG Encoder 4K20fps Decoder 4K40fps Jecoder 4K40fps Depth Engine 1080P	Display VO 1080P60 MIPI DSI 1x4/1x2 Iane 1.5Gbps 2.5D GPU Engine	Share Memory SRAM 2MB SDMA/PDMA & Channels 2D GDMA Engine OSD/CSC/Rotation Decompression
I2C x 5 PWM x 6 ADC 12b@1Mbps GPIO x 64 Codec/I2S	x3 4k@60 HDR ISP 4K@30fps DW 4K@30fps Down Scale 4 Paths MIPI CSI 3x2 Lane 1x4+1x2 Lane	Video Subsystem H264/HEVC/JPEG Encoder 4K20fps Decoder 4K40fps Decoder 4K40fps Josof	Display VO 1080P60 MIPI DSI 1x4/1x2 Iane 1.5Gbps 2.5D GPU Engine	Share Memory SRAM 2MB SDMA/PDMA & Channels 2D GDMA Engine OSD/CSC/Rotation Decompression 500MBps Input
I2C x 5 PWM x 6 ADC 12b@1Mbps GPIO x 64 Codec/I2S	x3 4k@60 HDR ISP 4K@30fps DW 4K@30fps Down Scale 4 Paths MIPI CSI 3x2 Lane 1x4+1x2 Lane	Video Subsystem H264/HEVC/JPEG Encoder 4K20fps Decoder 4K40fps Decoder 4K40fps Jepth Engine 1080P	Display VO 1080P60 MIPI DSI 1x4/1x2 lane 1.5Gbps 2.5D GPU Engine	Share Memory SRAM 2MB SDMA/PDMA & Channels 2D GDMA Engine OSD/CSC/Rotation Decompression 500MBps Input
I2C x 5 PWM x 6 ADC 12b@1Mbps GPIO x 64 Codec/I2S	x3 4k@60 HDR ISP 4K@30fps DW 4K@30fps Down Scale 4 Paths MIPI CSI 3x2 Lane 1x4+1x2 Lane	Video Subsystem H264/HEVC/JPEG Encoder 4K20fps Decoder 4K40fps 3D SL Depth Engine 1080P	Display VO 1080P60 MIPI DSI 1x4/1x2 lane 1.5Gbps 2.5D GPU Engine	Share Memory SRAM 2MB SDMA/PDMA & Channels 2D GDMA Engine OSD/CSC/Rotation Decompression 500MBps: Input
I2C x 5 PWM x 6 ADC 12b@1Mbps GPIO x 64 Codec/I2S	x3 4k@60 HDR ISP 4K@30fps DW 4K@30fps Down Scale 4 Paths MIPI CSI 3x2 Lane 1x4+1x2 Lane	Video Subsystem H264/HEVC/JPEG Encoder 4K20fps Decoder 4K40fps 3D SL Depth Engine 1080P	Display VO 1080P60 MIPI DSI 1x4/1x2 lane 1.5Gbps 2.5D GPU Engine	Share Memory SRAM 2MB SDMA/PDMA & Channels 2D GDMA Engine OSD/CSC/Rotation Decompression 500MBps Input

- Visual Wake Words (VWW)
- ML Deployment
- Framework: Tensorflow Lite for Microcontrollers (TFLM) [1]
- Kernels: muRISCV-NN Scalar (Unvectorized and Auto-Vectorized) vs. muRISCV-NN Vector (Manually Vectorized)
- Benchmarking: MLonMCU Flow [4]

Compiler Configurations

wide execution units

- Software Background ·

muRISCV-NN [2]

 Lightweight library of optimized ML kernels for embedded RISC-V

• Designed to leverage RVV for quantized deep learning workloads

Software Toolchains / Compilers

- LLVM: Partial support for RVV auto-vectorization since version 14 in 2022
- GCC: Initial support for RVV auto-vectorization in 2024
- LLVM 19 and GCC 14: This research extends prior work using LLVM 17 and GCC 14 by analyzing the most recent toolchain versions. Further, auto- and manual vectorization are compared on real hardware rather than in an instruction set simulator

Conclusion

Summary

- Compiler flags and vectorization consistently affect code size, while runtime tuning remains task-specific
- LLVM 19 shows the best trade-off between code size and performance on K230 hardware, whereas GCC tends to favor one extreme over the other
- LLVM shows more advanced handling of both auto- and manually vectorized code
- GCC's recent RVV support (since 2024) narrows the performance gap to LLVM

• ResNet and additional CNN models show consistent performance trends

- GCC achieves higher execution speeds at the cost of increased code size in scalar configurations III and IV
- In configurations I and II, GCC produces code that is 15 to 20% smaller while introducing an up to 75% runtime increase compared to LLVM
- Auto-vectorization impact negligible in configurations I vs. II \Rightarrow Only manual vectorization yields optimal trade-offs between runtime and code size

Tradeoffs Summary

Config	ТС	Kernel	Vect.	Runtime	Code Size
	GCC	Scalar/Vector	Auto	••••	
I	LLVM	Vector	Auto		•••
I	LLVM	Vector	Manual	•••	•••
	GCC	Vector	Auto	••	•••••
111	LLVM	Vector	Auto	•	••••

⊢ References

Challenges / Lessons Learned

- Vendor-provided RTOS requires custom GNU Toolchain \Rightarrow Use Linux instead **Outlook / Future Work**
- Evaluate on more **powerful RVV 1.0 hardware** (e.g. $VLEN \ge 256$)
- Check further workloads/models (e.g. FP32)
- Explore compiler heuristics/cost functions
- Port real-world application (e.g. person detection) to K230 board

- [1] David, Robert, et al. "Tensorflow lite micro: Embedded machine learning for tinyml systems." Proceedings of Machine Learning and Systems 3 (2021): 800-811.
- [2] van Kempen, P., Jones, J. P., Mueller-Gritschneder, D., Schlichtmann, U. (2024, May). Muriscv-nn: Challenging zve32x autovectorization with tinyml inference library for risc-v vector extension. In Proceedings of the 21st ACM International Conference on Computing Frontiers: Workshops and Special Sessions (pp. 75-78).
- [3] Banbury, C., Reddi, V. J., Torelli, P., Holleman, J., Jeffries, N., Kiraly, C., Xuesong, X. (2021). Mlperf tiny benchmark. arXiv preprint arXiv:2106.07597.
- [4] van Kempen, Philipp, et al. "Monmcu: Tinyml benchmarking with fast retargeting." Proceedings of the 2023 Workshop on Compilers, Deployment, and Tooling for Edge AI. 2023.
- [5] https://developer.canaan-creative.com/k230/dev/00_hardware/K230_datasheet.html

This work has been developed in the project Scale4Edge funded by the German Federal Ministry of Education and Research (BMBF) under contract no.16ME0127. The authors are responsible for the content of this publication.	SPONSORED BY THE Federal Ministry of Education and Research	Contact: philipp.van-kempen@tum.de	Open Source: https://github.com/ tum-ei-eda/muriscv-nn	