
Chair of Electronic Design Automation
Department of Computer Engineering
School of Computation, Information and Technology
Technical University of Munich

Benchmarking TinyML CNN Kernels on
RVV 1.0 Hardware: GCC 14 vs. LLVM 19

Philipp van Kempen, Benedikt Witteler, Jefferson Parker Jones, Daniel Mueller-Gritschneder, Ulf Schlichtmann

Motivation

SIMD vs. Vector Processing
• SIMD (Single Instruction Multiple Data): Fixed length, software hard to maintain

• Vector: Length-agnostic, one software fits all

TinyML
• Run AI inference locally on low-power MCUs instead of in the cloud

• Advantages: Greater privacy, lower power and cost, reduced latency

• Disadvantages: Limited computational resources and memory

Auto-Vectorization vs. Manual Vectorization
• Capability of handling SIMD/Vector workloads automatically vs. benefits from enhanced

optimizations in manually written vectorized code

Hardware Background

RISC-V Vector Extension
(RVV)
• Extends the scalar RISC-V ISA

by 32 new vector registers of
length VLEN bits each

• Supports dynamic register
grouping and vector-length-
agnostic operations

• Ratified in 2021 as RVV 1.0

Used Hardware [5]

• CanMV K230 Board: T-Head
XuanTie C908 core, 512 MiB
LPDDR3 RAM, microSD card

• C908 Core: Vector length
(VLEN) of 128 bits and SIMD dat-
apath composed of two 64-bit-
wide execution units

Software Background

muRISCV-NN [2]

• Lightweight library of optimized ML kernels for
embedded RISC-V

• Designed to leverage RVV for quantized deep
learning workloads

Software Toolchains / Compilers
• LLVM: Partial support for RVV auto-vectorization since version 14 in 2022

• GCC: Initial support for RVV auto-vectorization in 2024

• LLVM 19 and GCC 14: This research extends prior work using LLVM 17 and GCC 14 by
analyzing the most recent toolchain versions. Further, auto- and manual vectorization
are compared on real hardware rather than in an instruction set simulator

Conclusion

Summary
• Compiler flags and vectorization consistently affect code size, while runtime tuning

remains task-specific

• LLVM 19 shows the best trade-off between code size and performance on K230 hard-
ware, whereas GCC tends to favor one extreme over the other

• LLVM shows more advanced handling of both auto- and manually vectorized code

• GCC’s recent RVV support (since 2024) narrows the performance gap to LLVM

Challenges / Lessons Learned
• Vendor-provided RTOS requires custom GNU Toolchain ⇒ Use Linux instead

Outlook / Future Work
• Evaluate on more powerful RVV 1.0 hardware (e.g. V LEN ≥ 256)

• Check further workloads/models (e.g. FP32)

• Explore compiler heuristics/cost functions

• Port real-world application (e.g. person detection) to K230 board

Experiments

Setup
• Toolchains: LLVM 19 vs. GCC 14

• Models: Quantized Convolutional Neural Networks (CNNs) from TinyMLPerf Suite [3]:
– Image Classification (resnet)
– Speech Recognition (aww)
– Visual Wake Words (vww)

• ML Deployment
– Framework: Tensorflow Lite for Microcontrollers (TFLM) [1]
– Kernels: muRISCV-NN Scalar (Unvectorized and Auto-Vectorized) vs. muRISCV-NN

Vector (Manually Vectorized)
– Benchmarking: MLonMCU Flow [4]

Compiler Configurations
Optimize Unroll GCC LLVM

I Size (-Os) ✓ ✓
II Size (-Os) ✓ ✓
III Speed (-O3) ✓ ✓
IV Speed (-O3) ✓ ✓ ✓
V Speed (-O3) ✓a ✓

a Custom LLVM Unrolling heuristic

Results
For resnet model:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

III

III

IV
IV

I
I

II

II

III

III

IV

IV

V

V

I

I

III

IV

III

III IV

V

I

Runtime (rel.)

R
O
M

co
d
e
(r
el
.)

Scalar

Vector (Auto)

Vector (Manual)
GCC
LLVM

• ResNet and additional CNN models show consistent performance trends

• GCC achieves higher execution speeds at the cost of increased code size in scalar
configurations III and IV

• In configurations I and II, GCC produces code that is 15 to 20% smaller while introduc-
ing an up to 75% runtime increase compared to LLVM

• Auto-vectorization impact negligible in configurations I vs. II ⇒ Only manual vectoriza-
tion yields optimal trade-offs between runtime and code size

Tradeoffs Summary
Config TC Kernel Vect. Runtime Code Size

I GCC Scalar/Vector Auto ••••• •••••
I LLVM Vector Auto •••• •••
I LLVM Vector Manual ••• •••
III GCC Vector Auto •• ••••••
III LLVM Vector Auto • ••••

References

[1 ] David, Robert, et al. "Tensorflow lite micro: Embedded machine learning for tinyml systems." Proceedings of Machine
Learning and Systems 3 (2021): 800-811.

[2 ] van Kempen, P., Jones, J. P., Mueller-Gritschneder, D., Schlichtmann, U. (2024, May). Muriscv-nn: Challenging
zve32x autovectorization with tinyml inference library for risc-v vector extension. In Proceedings of the 21st ACM
International Conference on Computing Frontiers: Workshops and Special Sessions (pp. 75-78).

[3 ] Banbury, C., Reddi, V. J., Torelli, P., Holleman, J., Jeffries, N., Kiraly, C., Xuesong, X. (2021). Mlperf tiny benchmark.
arXiv preprint arXiv:2106.07597.

[4 ] van Kempen, Philipp, et al. "Mlonmcu: Tinyml benchmarking with fast retargeting." Proceedings of the 2023 Work-
shop on Compilers, Deployment, and Tooling for Edge AI. 2023.

[5 ] https://developer.canaan-creative.com/k230/dev/00_hardware/K230_datasheet.html

This work has been developed in the project Scale4Edge funded by the German Federal Ministry of Education and Research (BMBF)
under contract no.16ME0127. The authors are responsible for the content of this publication.

Contact:
philipp.van-kempen@tum.de

Open Source:
https://github.com/
tum-ei-eda/muriscv-nn

philipp.van-kempen@tum.de
https://github.com/tum-ei-eda/muriscv-nn
https://github.com/tum-ei-eda/muriscv-nn

