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Motivation

SIMD vs. Vector Processing
• SIMD (Single Instruction Multiple Data): Fixed length, software hard to maintain

• Vector: Length-agnostic, one software fits all

TinyML
• Run AI inference locally on low-power MCUs instead of in the cloud

• Advantages: Greater privacy, lower power and cost, reduced latency

• Disadvantages: Limited computational resources and memory

Auto-Vectorization vs. Manual Vectorization
• Capability of handling SIMD/Vector workloads automatically vs. benefits from enhanced

optimizations in manually written vectorized code

Hardware Background

RISC-V Vector Extension
(RVV)
• Extends the scalar RISC-V ISA

by 32 new vector registers of
length VLEN bits each

• Supports dynamic register
grouping and vector-length-
agnostic operations

• Ratified in 2021 as RVV 1.0

Used Hardware [5]

• CanMV K230 Board: T-Head
XuanTie C908 core, 512 MiB
LPDDR3 RAM, microSD card

• C908 Core: Vector length
(VLEN) of 128 bits and SIMD dat-
apath composed of two 64-bit-
wide execution units

Software Background

muRISCV-NN [2]

• Lightweight library of optimized ML kernels for
embedded RISC-V

• Designed to leverage RVV for quantized deep
learning workloads

Software Toolchains / Compilers
• LLVM: Partial support for RVV auto-vectorization since version 14 in 2022

• GCC: Initial support for RVV auto-vectorization in 2024

• LLVM 19 and GCC 14: This research extends prior work using LLVM 17 and GCC 14 by
analyzing the most recent toolchain versions. Further, auto- and manual vectorization
are compared on real hardware rather than in an instruction set simulator

Conclusion

Summary
• Compiler flags and vectorization consistently affect code size, while runtime tuning

remains task-specific

• LLVM 19 shows the best trade-off between code size and performance on K230 hard-
ware, whereas GCC tends to favor one extreme over the other

• LLVM shows more advanced handling of both auto- and manually vectorized code

• GCC’s recent RVV support (since 2024) narrows the performance gap to LLVM

Challenges / Lessons Learned
• Vendor-provided RTOS requires custom GNU Toolchain ⇒ Use Linux instead

Outlook / Future Work
• Evaluate on more powerful RVV 1.0 hardware (e.g. V LEN ≥ 256)

• Check further workloads/models (e.g. FP32)

• Explore compiler heuristics/cost functions

• Port real-world application (e.g. person detection) to K230 board

Experiments

Setup
• Toolchains: LLVM 19 vs. GCC 14

• Models: Quantized Convolutional Neural Networks (CNNs) from TinyMLPerf Suite [3]:
– Image Classification (resnet)
– Speech Recognition (aww)
– Visual Wake Words (vww)

• ML Deployment
– Framework: Tensorflow Lite for Microcontrollers (TFLM) [1]
– Kernels: muRISCV-NN Scalar (Unvectorized and Auto-Vectorized) vs. muRISCV-NN

Vector (Manually Vectorized)
– Benchmarking: MLonMCU Flow [4]

Compiler Configurations
Optimize Unroll GCC LLVM

I Size (-Os) ✓ ✓
II Size (-Os) ✓ ✓
III Speed (-O3) ✓ ✓
IV Speed (-O3) ✓ ✓ ✓
V Speed (-O3) ✓a ✓

a Custom LLVM Unrolling heuristic

Results
For resnet model:
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• ResNet and additional CNN models show consistent performance trends

• GCC achieves higher execution speeds at the cost of increased code size in scalar
configurations III and IV

• In configurations I and II, GCC produces code that is 15 to 20% smaller while introduc-
ing an up to 75% runtime increase compared to LLVM

• Auto-vectorization impact negligible in configurations I vs. II ⇒ Only manual vectoriza-
tion yields optimal trade-offs between runtime and code size

Tradeoffs Summary
Config TC Kernel Vect. Runtime Code Size

I GCC Scalar/Vector Auto ••••• •••••
I LLVM Vector Auto •••• •••
I LLVM Vector Manual ••• •••
III GCC Vector Auto •• ••••••
III LLVM Vector Auto • ••••
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